SEQUENTIALLY P-CLOSED SPACES (*)

by Ivan GoTcHEV (in Sofia)(**)

SOMMARIO. - Un 52 - spazio é sequenzialmente 52 - chiuso se ¢ solo s¢ esso ¢
sequenzialmente chiuse in ogni 3 - spazioin cui esso sig immerso. Se 52 é
unaclasse di spazi, rispettivamente, completamente regolari, normali, perfe-
tamente normali, focalmenie compatti, paracompatii, metrici, gli spazi se-
quenzialmente & - cliusi sono esattamente | 52 - spazi numerabilmente
compatti, Per varic eategorie 53 consistenti di spazi di Hausdor(f si danne
caraiterizzazioni interne depli spazi sequenziglmente 2 - chiusi che permet-
tone di stabilime molle alire proprietd,

SUMMARY. - A 57 - space is sequentially 59 - closed if it is sequentially closed in
every 52 - space in which it iy embedded. For 52 - completely regular, normal,
perfectly normal, locally compact, paracompact and metric the sequentially
&2 - closed spaces are precisely the countably compact 52 - spaces. Internal
characterization of sequentially & - closed spaces are given for various
categories 5 consisting of Hausdorff spaces which permits io establish a lot
of other propertics of the sequentially 52 - closed spaces.

0. Introduction.

A space Yis called sequentially determined extension of its subspace
X iff for every point y € Y there exists a sequence {r,,} “I in X such that
=

lim x,=y [Go]. Let 5> be a class of topological spaces. A space X € 52

Ti—=a0

is said to be 5 - closed (sequentially 52 - closed) ilf X is closed (sequen-
tially closed) in every 50 space in which it is embedded. In other words X
is sequentially 52 - closed iff X has no sequentially determined extension

Y € g and Y = X (this holds under very mild restrictions on 5> which
are verified in all cases considered here).

Obviously, every 52 - closed space is sequentially 5 - closed. The
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52 - closed spaces were extensively studied for categories 52 consisting
of Hausdorff spaces (see [BPS]). For such $° every compact (countably
compact) 52 - space is 5 - closed (sequentially 2 - closed). The sequen-
tially Hausdor(f - closed spaces were introduced by P. Alexandroff and F.
Urysohn [AU]. They were proved that the regular sequentially Hausdorff
- closed spaces coincide with the regular countably compact spaces. In
[DGo] sequentially 52 - closed spaces for some classes 52 of topological
spaces between T; and T; are studied. It is proved in particular that for
the category SUS of topological spaces in which every convergent se-
gquence has a unique accumulation point the sequentially SUS - closed
spaces are precisely the countably compact SUS - spaces. On the other
hand it follows by results of A. Tozzi [To] that the sequentially SUS -
closed spaces coincide with the absolutely SUS - closed spaces, intro-
duced by D. Dikranjan and E. Giuli [DG3] in a more peneral situation.
This was in fact the starting point of our study of sequentially 52 - closed
spaces,

The aim of this paper is (0 study the sequentially 50 - closed spaces
for 2 = § (n), regular, completely Hausdor{l, completely regular, nor-
mal, perfectly normal, locally compact, paracompact and metric.

In section 1 we introduce open elementary filters which serve as the
main tool in the study of sequentially $° - closed spaces. We introduce
also #" convergence and §" - convergence (generalizations of the @ -
convergence introduced by Velicko [Ve] and the usual convergence) and
characterize the § (n) - spaces by means of these convergences following
Velicko [Ve], Dikranjan and Giuli [Di], [DG1], [DG3].

In section 2 we give internal characterization of the sequentially &
- closed spaces in terms of special filters and covers for 52 = § (n),
regular, completely Hausdorff and completely regular. For &2 = § (n)
this characterization involves the 6" - convergence and S" - convergence.
An example of a sequentially Hausdor(f - closed completely Hausdorff
space (and hence S (n) - space for n = 1, 2, ...} is given which is neither
Hausdorff - closed nor countably compact. We give also an example of a
sequentially regular - closed space which is neither regular - closed nor
eountably compact. We discuss also the relations between sequentially
52 - closed spaces and & (1) - closed spaces (see [BPS]).

In section 3 various properties of the sequentially 2 - closed spaces
are established. We show in particular that for 2 - completely regular,
normal, perfectly normal, locally compact, paracompact and metric the
sequentially &2 - closed spaces are precisely the countably compact &2 -
spaces. Since for paracompact spaces countable compactness coincides
with compactness in the last two cases we get the compact 2 - spaces.

The author is indebted to D. Dikranjan for many helpful suggestions



SEQUENTIALLY £2-CLOSED SPACES 3

and for the permanent encouragement.
1. Preliminaries.

Troughout the paper the properties of regularity, completely regu-
larity, etc. include the Ty separation property, U denotes the closure of
the set IJ in a given topological space, N denotes the set of positive
integers and R denotes the real line with the usual topology. In general
the terminology and notation follow [En].

Let X be a topological space and let 4 be a countable subset of X. A
maximal open elementary filter generated by A is the open filter on X with
base B = {F |FCX, F is open in X and A\F is {inite}. An open filter F
on X is a maximal open elementary filter, iff there exists a countable subset
A of X, such that 5F is the maximal open clementary filter on X generated
by 4. If X is a US - space (every convergent sequence in X has a unique
limit point [MN]} then .4 is uniquely determined by 5 up to a finite
subsel (see [DGo)). An open filter will be called open elementary filter,
iff it is contained in some maximal open elementary filter, A filter & is
freeill N{F | FE F} = ¢.

Let F = {Fy}ae .2 bea free open elementary filter on X, On the sel
X3 =X U {F} we introduce the following topology: The set X is open,
the relative topology of X coincides with the original topology of X and
for open base at the point {5} we take the family {{F} U Fq | Fa € F,
a € A}. Tt is easy to verify that the topological space obtained in this
way is a T} sequentially determined extension of X whenever X' is Ty. In
the sequel X'z will be called standard sequentially determined extension of
X by &,

Let X be a topological space, M CX and n € N. The pointx € X 18
8 (n) - separated from M iff there exist open sets U, i = 1, 2,..., n such that
relhc..cC Un Ui CU; 4 yand Uy OM =g xis S (D) - separated from
M iffx & M. The space X is an § (n) - space, iff every two different points
in X are § (n) separated [Vi]. It is obvious that § (1) =73, 5 (2) = T35
(distinct points can be separated by disjoint closed neighbourhoods).

An open cover {2a} a € .4 of the space X is an § (n) - cover, iff
every pointx € X is § (n) - separated from some X'\ Us. Clearly the 5 (0)
- covers are exactly the open covers. A filter FonX isan § (n) - filter, iff
every point x € X, which is not adherent point for F is § (n) - separated
from some U € &F [PV].

Let X be a topological space and n € N. The pointx € X will be called
§" - limit (8" - limit) of a sequence {xn]n:l in X, iff for every chain U/

CU; C... CUy of open neighbourhoods of x such that U; CU; 4+ 1 for
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i =12 onm=-1, Hy {E.] contains all but a finite number of the members
of the sequence. Every sequence which has an 87 - limit (8" - limit) will
be called $” - convergent (8" - convergent). If for every chain Uy CU> C ...
C Uy of open neighbourhoods of x such that U clisifori=1,2,..,
n - 1, Uy (Uy) contains infinitely many members of the sequence then x
will be called 5" - adherent point (8" - adherent point) of the sequence
{ru};l . Clearly, the S" - convergence is the usual topological conver-

gence and the ot convergence is the 8 - convergence defined by Velicko
[Ve]. Also every S” - convergent sequence is 8" - convergent and every @
- convergent sequence is S ' ! - convergent. So every convergent, in the
usual sense, sequence is §" - convergent and & - convergent for every n
€ N. If X is regular then the S” - convergence and the 8" - convergence
coincides with the usual convergence. Similar facts are valid for §" and
g" - adherent points of a sequence. In the same way 5" (6") convergence
and §" (8") adherent points can be defined for nets. (For 8" - adherent
points see [DG3] and for n = 1 see also [DG2]).

The § (n) - spaces can be characterized by means of the 8" - conver-
gence, §" - convergence and the usual convergence.

PROPOSITION 1.1. Let X be a topalagical space and n € N. The following
conditions are equivalent:

(a)Xisan § (n) - space

(b) every convergent sequence in X has a unique 8" - adherent point
(¢) every convergent sequence in X has a unique 8" - limit

(d) every convergent sequence in X has a unique §" * ' - adherent point
() every convergent sequence in X has a unigue 8" 7 1 - limit.

Proaf. Follows directly from the definition.

2, Characterization of the sequentially 5 - closed spaces.

The next theorem characterizes sequentially S (n) - closed spaces.
Analogous results for § (n) - closed spaces were obtained in [PV] and for
S (n) - 8 - closed spaces were obtained in [DG3].

THEOREM 2.1. Let X bea T space and n € N. The following conditions
are equivalent:

(a) every sequence in X has a 6" - adherent point
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(b) every sequence in X has an S" * 1. adherent point

(c) every countable § (n) - cover of X has a fintite subcover

(d) every 8 (n) - filter with a countable base of closed sets has an ad-
herent point

{e) every open elementary S (n) - filter has an adherent point

(I} every maximal open elementary § (n) - filter has an adherent
point.
If X is an § (n) - space then the above conditions are equivalent to;

(g) X is sequentially § (n) - closed.,

Froof. Obviously (a) implies (b) and (e) implies (f). To see that (b)
implies (c) assume that {Un}n":l is a countable § (n) - cover which has no

k

finite subcover. For every k = 1, 2,... we choose xg U U . Letx € X
i=1

Since {U;L:‘l is an § (n) - cover then there exists an element U; of the

cover and chain Iy ClF ... Ckn ul‘up-_cn neighbourhoods of x such that
Vj CVj+i1forj=12,..,n-1and V, C U This means that x is not
an 5" * 1 _adherent point for {x‘k}k:‘t since foreveryi€E Nand k =i we

have 1 & U Therefore 'P:k]'k:zl has no §" * ! - adherent points in X : a

contradiction. Let now 5F be an § (n) - filter on X with countable closed
base [F;}E:l. Assume that F has no adherent points. Then 24 = {U| U

= X\F;, i € N} is an § (n) - cover of X. Let U;,, Uj, ...,U;, be a finite

k k
subcover of 24. Since  is a filter we have N (X‘l.u,;.) = M F;, # ¢, hence
j=1 i=t
Uiy Uiy Ui, is not a cover of X. This contradiction proves that (c)
implies (d). Now we will prove that (d) implies (). Let 5 be an open
elementary § (n) - filter without adherent points. There exists a maximal
open elementary filter 5" such that 5 © 5. Then 5’ has no adherent
: 1 o H ¥ - g .
points and if ka}k-l determines 5F' then {q}kq_ is a closed set for every
i € N. Thus the filter #" generated by {F; |Fi = {.-;;_-].k:_ JiEN } containg
F'. S0 F"isan § (n) - filter with a countably base of closed sets without
adherent points. To see that (f) implies (a) assume that [‘rk]k: is a

sequence in X which has no 8" - adherent points. Let 5 be the maximal

open elementary filter generated by {,_rk}k:] and x be an arbitrary point
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o[ X. There exists achain Uy € Us C... C U, of open neighbourhoods
ofx such that Ui € Ui 4 1,i =1,2,..,n - 1 and X \ U, contains all but
a finite members of the sequence. Therefore X \U, € . On the other
hand x and X \ Uy, are S (n) - separated. This means that & is a maximal
open ¢lementary S (n) - filter with no adherent points. Contradiction.
Now let we assume that & is not sequentially § (n) - closed. Thus thl.'G

exists an § (n) - space ¥ DX, a pointy € Y\X and a sequence {xk}k 3

X such that lim xx = y. Clearly y is a 8" - adherent point Gf{x"]’k:;' From

k= m
Proposition 1. 1 it follows that {xk}kfl has no other 6" - adherent points

in ¥. Thus {xi} * has no 8" - adherent points in X. This contradiction
k=1

proves that (a) implies (g). To prove that (g) implies (f) assume that 5
is a maximal open elementary S (n) - filter with no adherent points. Let
X7 be the standard sequentially determined extension of X by . It is
easy to verily that X s isan § (n) - space. Thus X is not sequentially § ()
- closed. Contradiction.

The idea to characterize closed spaces with 8 - convergence and
elementary filters (but in a somewhat different sense, sec [Bo], chap. 1.
§ 6) comes from Veli¢ko [Ve].

Now we show that the class of sequentially § (n) - closed spaces is
not exhausted by the § (n) - closed spaces and by the countably compact
§ (n) - spaces,

EXAMPLE 2.2 Let N be the space of positive integers with the discrete
topology and let SN be the Cech-Stone compactification of N. Let also

X =(BNW) U {ru} {y,} ot We provide X with a topology as
follows: The points {xg}i ;o are isolated for § € N and j € N. For a

neighbourhood base of y; (i € N) we take the family y; U
{{x.ﬁ kEN]. Let {F} € AN \Nand let {Uq, a € A4} be a neighbour-

hood base of {5} in ﬁN Fnr a neighbourhood base of { F} in X we take
the famﬂy{?}, |Vu fx;j - JEUHHN},::E.;‘E]. It is

easy to verily that X is a Hausdnrﬂ‘-clusaﬂ § (n) - space foreveryn €N
and X is not countably compact. Let now F € N Wand ¥ = X \{F}.
Clearly Yis § (n) - closed for no s and Y is not countably compact. By (a)
of the above theorem Y is sequentially § (n) - closed.

Let X be a topological space. An open filter & on X is a regular filter
iff for each U € 5 there exists ¥ € & such that V C U [Ba]. Let 2/ and
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1% be open covers of a space X, 1* is a shrinkable refinement of 1L i for
cach V¥ € 1*, there is I € ¥{ such that ¥ C U. An open cover LL is regular
ill there exists an open cover 1* which refines 7/ and 7% is a shrinkable
reflinement of itsell [BPS].

THEOREM 23. Let X be a Ty space. The following conditions are
equivalent:

(a) every apen elementary regular filter on X has adherent points
(b) every countable regular cover of X has a finite subcover.

If X is @ regular space then the above conditions are equivalent (o:
(¢) Xis sequentially regular-closed.

Proof. To see that (a) implies (b) assume that 3/ = {U;}I:“‘l is @

countable regular cover without finite subcovers. Foreachk =1,2, ... we
k

choose a point xx € X such that xx & U U; . Then clearly xx & U;
i=1

whenever k& = i. Let L% = {V,} o & 4 be a cover of X which refines 7./

and LF is a shrinkable relinement of itself. Clearly the cover T* has no

finite subcovers. It is easy to verify that the filter 5 generated by the filter

k

base [X W Vo, qi€ A kE N} is an open elementary regular filler on
=1

X without adherent points. Contradiction. Let now 5F be an open

elementary regular filter on X without adherent points. There ¢xists a

maximal open elementary filter such that F < F". Let {‘r"]’k: deter-

mines 7. But " has no adherent points. Then {xk].k“’ is a closed set for

everyi €EN. Let I = [U,—l Ui=X xk] ‘::,,EEN].and 1+ = {V|there

k
exists an open set W € & such that V¥ =X \ W}. It is easy to verify that
1* is an open cover of X which refines 2./ and 7.* is a shrinkable refine-

ment of itself. Thus Z{ is a countable regular cover of X without finite
subcovers and this proves that (b) implies (a). Now we prove that (a)
implies (c). Assume that Xis not sequentially regular - closed. Thus there
exists a regularspace ¥ D X, a pointy € Y'\X and a sequence {x,. }":1 in

X such that limx, =y. Let 1%, be the filter of neighbourhoods of y on Y.

n=*x

Since Vis a regular space it follows that .8, is an open elementary regular
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filter on ¥ with no adherent points in X, Then T* = {J/ |there exists W

€ 1%, such that ¥ = X N W} is an open elementary regular filter on X
without adherent points. Contradiction. Assume that there exists an

open elementary regular filter 5 on X without adherent points. Then the

standard sequentially determined extension Xz of X by 5 will be a
regular space. This contradicts the sequentially regular - closedness of X,
50 (¢) implies (a).

Mow we show that the class of sequentially regular - closed spaces is
not exhausted by the regular - closed spaces and by the countably compact
regular spaces,

EXAMPLE 24. The space X in Example 4.18 in [BPS] is a minimal
regular space which is not countably compact [BS]. Letx = (wy, 1,1) =
(@1, 1,2) and ¥ =X \{x}. Then by Lemma 3.10 ¥ is asequentially regular
- closed space which is neither regular - closed nor countably compact.

Let X be a topological space. X is completely Hausdorff iff for each
pairx, y of distinct points, there exists a continuous real - valued function
f such that f(x) # f(v). An open filter F on X is completely Hausdor(f iff
for cach x € X which is not an adherence point of 5 there exists an open
set U conlaining x, ¥ € 5 and continuous real - valued function fon X
such that f (U) = {1}and f (V) = {0}. An open filter 5 on X is completely
regular iff for each U € 5, there exists I € 5 and a continuous real -
valued function f on X such that f{V) = {0} and f (X\U) = {1}. Let 1»
and 1.{ be covers of a space X. T* is a continuous refinement of 1/ iff for
each IV € L¥ there is U € 7.{ and continuous real - valued function f on
X such that f (V) = {0} and f (X\U) = {1}. An open cover is completely
Hausdorff iff it has 4 continuous refinement [BPS]. An open cover 24 is
completely regular iff there is an open cover 1% which refines 24 and 1+
is a continuous refinement of itself.

THEOREM 2.5. Let X be a Ty space. The following conditions are
equiivalent:

(a) every countable completely Hausdorff cover of X has a finite sub-
cover

(b) every open elementary completely Hausdorff filter on X has adher-
cnt points

(€) every maximal open elementary completely Hausdor|f filter on X
has adherent points.
If X is a completely Hausdorff space then the above conditions are
equivalent to:
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(d) X is sequentially completely Hausdorff - closed.

Proof. To see that (a) implies (b) let 5 be an open elementary
completely Hausdor(T filter on X without adherent points. There exists a
maximal open elementary filter 5" on X Such that FC 5. 1T {xk}k:!, is

a sequence which generate 55" then xkl k:1 is a closed set for every i €
N.LetU ={u.1 | U;=X\{.rk}k:;, .EEN} and 7% = (V| Ve =f [l}. ),

XEX,We Fand f:X—= Rissuchthat f (x) =0and f (W) = {1}}. Then
74 and ¥ are dpen covers of X and T is a continuous refinement of 4.
Thus 2/ is a completely Hausdor(f cover of X without a finite subcover.
Obviously (b) implies (¢). We prove that (¢) implies (a). Let 1{
=[U"]_u:| be a countable completely Hausdor(T cover of X withoul finite

subcovers. Let T+ = {Fal a e 4 be a cover of X which is a continuous
k

refinement of 2. For every k € N we choose i @ U Ui and let 5F be the
i=1
maximal open elementary filter generated by {rk}kft' Ifx i an arbitrary

point of X then there exists « € 4 such thatx € V, and there exists i €
N and f : X - R such that f (Fg) = {0} and f (X \U/}) = {1}. Let

W =f1 (1,:3‘1] and g (x) = 2. min (f (x),V2). Then W€ F, g (Vo) = {0}

and g (W) = {1}. Thus 5 is @ maximal open elementary filter which is
completely Hausdorff and it has no adherent points, To prove that (b)
implies (d) assume that X is not sequentially completely Hausdorff -
closed. Then there exists a completely Hausdorff space ¥ D X, a point y
€ Y \X and a sequence {.m};l of points of X such thatklimx;, =y. The
— o0
filter 1%y of neighbourhoods of y is a completely HausdorlT filter on Y.
Let 7% = {V |there exists W& 1%, such that ¥ =X N W}, Then 77 is an
open elementary completely Hausdorff filter on X without adherent
points. Contradiction. If there exists an open elementary completely

Hausdor!l filter 5F on X without adhérent points, then X will be a
completely Hausdorff, sequentially determined extension of X. This
proves that (d) implies (b).

The space Y in Example 2.2 is also completely Hausdor(l, conse-
quently sequentially completely Hausdorff - closed. On the other hand
it is neither completely Hausdorff - closed nor countably compact.
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LEMMaA 2.6, In a completely regular space X every open coverof X is a
completely regular cover,

Proof. Let U = {Ua} « & /1 be an open cover of X. For every ¢ €
L and every x € Uy let fa ¢ be a continuous real - valued lunc-
tion such that fp «(¥) = 1 and fa (X\W,) = {0}. If 2* =
LL:| V= fak (W], a € s4,x € Uy,n =2} then 1+ isan open cover of X,
refines 7/ and 1% is a continuous refinement of itsell.

THEGREM 2.7. Let X be @ Tq space. The following conditions are:
equivalent:

(a) every countable completely regular cover of X hay a finite subcover

(b) every open elementary completely regular filter on X has adherent
poinis.
If X is a completely regular space then the above conditions are
equivalent to:

(€) X is sequentially completely repilar - closed

(d) X is countably compact,

Proof. Let 5 be an open elementary completely regular [ilter on &
without adherent points and let 5" be a maximal open elementary filter

such that FC F'. If {xg,h:l is a sequence which generates &,

then {x;;};“, is. a closed set for every i & N. Let U =
=i
{U,- | Uj=X x"}k:f i EN]. and 7% = {V|there exisis an open set W e

& such that ¥ = X\W}. Then 24 and 1. are open covers of X, T+ relines
2/ and 1¥ is continuous refinement of itself. Thus 24 is a completely
regular cover of X withoul linite subcovers. This proves that {a) implies
(b). Tosee that (b) implies (a) let 24 =-{U;]-!_:1 be a countable completely

regular cover of X without finite subcovers and let 1* = {Va} » = 4 be

an open cover of X which refines 7./ and 7% is a continuous refinement
k
of itself. For every & € N we choose 1 & U Ui and let & = {W |there
i=1

k
cxist Vg, € 1% such that W =X\ 17.1,.. k € N }. Let 5 be the maximal
i=1

open elementary filter on X determined by .{x}].kfl. If & is the open filter
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with base /5 then 5 C F'and hence & is an open elementary completely
regular filter without adherent points, Now we prove that (b) implies (c).
Assume that X is not sequentially completely regular - closed. Then there
exists a completely regular space ¥ D X, a point y € Y\X and a sequence
{xk}kzl of points of X such that limxg = y. The filter 7%, of neighbour-
hoods of y is a completely regular filter on ¥. Let 7% = {W| there exists
an open set ¥ € 1*y such that W =X N ¥}, then 7.* is an open elementary
completely regular filter on X without adherent points. Contradiction. If
there exists an open elementary completely regular filter 5F on X without
adherent points, then X5 will be a completely regular, sequentially
determined extension of X\ This proves that (¢) implies (b). The equi-
valence of conditions (a) and (d) follows directly by Lemma 2.6.

For a class 52, the class of all first countable 5 - spaces will be
denoted by 52 (1) [BPS]. Evidently every sequentially 50 - closed 52 (1)
space is & (1) - closed. Hence the sequentially 52 (1) - closed spaces
coincide with the 52 (1) - closed spaces. For various classes 2 the 52 (1)
- closed spaces were studied in [Ste2].

A family of open sets 2. in a space X is a proximate cover of X iff
U {U|U € UL} = X [Ka].

ks

THEOREM 2.8. Let X be a Ty space and n € N. The following conditions
are equivalent:

(a) every countable § (n - 1) - cover of X contains a finite proximate
subcover

(b) every countable open § (n) - filter has adherent points.
If X is an 8§ (n) (1) - space then the above conditions are equivalent
fo:

() Xis § (n) (1) - closed.

Proof. To see that (a) implies (b) suppose that F is a countable open

S (n) - filter on X without adherent points. Then 2/ = {U|U =X\ V'€

1} isacountable § (i - 1) - cover of X and 7./ has a proximate subcover.
k k ok

Sothatif X= U Uithen N (X\UD) =N Vi =¢.But V€ F fori =1, 2,
=1 i=1 i=1

...k. Contradiction. Now let us assume that 2L = {U.']-,““l is a countable
i

8 (n - 1) - cover of X which has no [inite proximate subcovers. For every
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i
i € N we consider V; =X \(U Uj), Obviously B = { V;].I,:I is a countable
=1
open base of a filter . One can easily verify that 5 is a countable open
S (n) - filter without adherent points. This contradiction proves that (b)
implies (a). Il X is not § (n) (1) - closed then there exists an § (a) (1)
extension ¥ of X and a point y € ¥ \X. But the trace on X of the
neighbourhood filter of the point y is a countable open § (n) - filter on
A without adherent points in X and this proves that (b) implies (¢). To

see that (¢) implies (b) we suppose that F is a countable open § (n) -
filter without adherent points. Then the standard extension X7 of X by

Fisan S (n) (1) space. Contradiction.
The above theorem for n = 1,2 is proved by R. Stephenson [Ste2].

3. Properties of the sequentially 50 - closed spaces.,

It was proved by P. Alexandroff and P. Urysohn [AU] that the regular
Hausdorff - closed spaces (regular sequentially Hausdorff - closed
spaces) are precisely the compact (regular countably compact) spaces. In
fact every regular § (n) - closed space is compact as shown by Herlich
[He] forn =2 and by Porter and Votaw [PV] for n >2. On the otheér hand
every completely repular, regular - closed space is compact ([He], [BS]).
We show next that similar results are valid for sequentially 52 - closed
spaces,

COROLLARY 3.1. (a) Let X be a regular space and n € N. Then X is
sequentially § (n) - closed iff X is countably compact.
(b) Let X be a completely regular space. Then X is sequentially regu-
lar - closed iff X is countably compact.

Froof. (a). Follows by the fact that every open cover of a regular space
isan § (n) - cover and by Theorem 2.1. (b). Follows by Theorem 2.3. and
Theorem 2.7,

COROLLARY 3.2. Let X be a Lindeldf, regular space and n € N. The
following conditions are equivalent:

(a) X iy compact

(b) X is regular - closed

(€) X is sequentially regular - closed

(d) X is sequentially § (n) - closed.
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Proof. For the ¢quivalence of (a) and (b} see¢ [He]. The equivalence
of the other conditions follows by the fact that ¢very Lindelof, regular
space is normal [En] and by Corollary 3.1.

THEOREM 3.3. Let X be @ normal space. Then X is sequentially normal
- closed iff X is countably compact.

Proof. The proof follows immediately from Corollary 3.1 and Lemma
3.4,

LEMMA 34. Let X be a regular space, x € X and let X\, {x} be a normal
space. Then X is a normal space.

THEOREM 3.5. Let X be a perfectly normal space. The following condi-
tions are equivalent:

(a) X is perfectly normal - closed
(b) X is sequentially perfectly normal - elosed
() X is countably compact,

Proof. For the equivalence of conditions (a) and (b) see [Ste2].
Obviously (¢) implies (b). 1t is known that in & normal space the count-
able compactness coincides with the feeble compactencs (see [Stel] and
[Hew]) and that a regular space X is feebly compact iff every countable
open regular filter on X has adherent points [Stel]. Then the proof that
(b) implies (c) follows by Lemma 3.4 and by the fact that if X is a normal
space, x is a point in X and X \{x} is a perfectly normal space, then X isa
perfectly normal space wheneverx is a Ga set in X,

THEOREM 3.6. Let X be a locally compact space. Then X is sequentially
locally compact - closed iff X is countably compact.

Proof. It is obvious that if X is countably compact then X is sequen-
tially locally compact - closed. Let X be a sequentially locally compact -
closed space and let we assume that X is not countably compact. Then
there exists a sequence {x_..]nzl of distinct points of X without adherent

points. Let wX be the Alexandroff compactification of X (s¢e [En]) and
¥ = wX\X. It is easy to verily that limx, = y. Thus X is not sequentially

H ==

locally compact - closed. Contradiction.
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THEOREM 3.7. For @ = paracompact or metric if X is a 22 - space then
the following conditions are equivalent:

(a) X is 2 - closed

(b) X is compact

(c) X is sequentially 2 - closed
(d) X is countably compact.

FProof. For the equivalence of (a) and (b) see [SSe] and for the
equivalence of (b) and (d) see [En]. Obviously (d) implies (c). The proof
that (c) implies (d) for &2 = paracompact follows by Corollary 3.1 and
by the fact that il X is a regular space, x € X and X \{x} is a paracompact
space then X is a paracompact space, For 2 = metric it follows by
Corollary 3.1 and by the fact that if X" is a regular first countable space,
xr € X and X'\ (x} is a metric space then X is a metric space.

The spaces satisfying the equivalent conditions (a) - () of Theorem
2.1 and the equivalent conditions (a), (b) of Theorem 2.3 and Theorem
2.7 and the equivalent conditions (a) - (c) of Theorem 2.5 are in fact
natural generalizations of the countable compactness. Moreover for 52 =
[J§ (SUS) the sequentially 5 - closed spaces are preciscly the sequen-
tially compact (countably compact) spaces [DGo]. The next theorem
shows that some properties of the countably compact spaces are valid
also for the sequentially 5 - closed spaces.

THEOREM 38. Let n € N and 52 be one of the following classes of
topological spaces: US, SUS, § (n), regular, completely Hausdorff, complete-
Iy regular, normal, perfectly normal, locally compact, paracompadct or netric.
Then the following conditions are satisfies:

(a) Sequentially 52 - closedness is preserved by continwous functions
Oitto @ 59 space.

(b) If a product of nonveid spaces is sequentially 2 - closed then
cach coordinate is sequentially & - closed.

(¢) Every sequentially & - closed space is pseudocompact.

Proof. Obviously (a) implies (b). Clearly (a) and (c) are true when
sequentially 2 - closedness coinsides with countable compactness or
sequential compactness, i.e. for 52 = US, SUS, completely regular, nor-
mal, perfectly normal, locally compact, paracompact or metric. For the
others & (a) follows from Theorem 2.1, Theorem 2.3 and Theorem 2.5.
To see that (c) is true let f : X - R be a continuous function. Then f (X)



SEQUENTIALLY 52-CLOSED SPACES 15

is a sequentially 52 - closed metric space by (a). Thus f (X) is a compact
space by Theorem 2.7 and Theorem 3.7. This shows that f is bounded.

THEOREM 3.9. Let n € N. The following conditions are valid:

(a) 8 (n) (1) - closedness is preserved by continuous functions onto
an § (n) - space.

(b) If a product of nonvoid spaces is an 8 (n) (1) - closed space then
each coordinate is § (n) (1) - closed.

{c) Every S (n) (1) - closed space is pseudocompact.

Proof. (a) [ollows by Theorem 2.8 and (a) implies (b). We shall proof
(c). Let f : X = R be a continuous function. Then 2/ = {f ! (-k, k) }e=1
is a countable regular cover of X. Since X i5 § (n) (1) - closed then by
Theorem 2.8 we can choose a finite proximate subcover of X. This implies
that f is bounded.

The above theorem forn = 1,2 is proved by R. Stephenson [Ste2].

Let 52 be a class of topological spaces. X € £ is called 22 - minimal
iff X has no strictly coarser 5 topologies. (For & - minimal spaces sce
[BPS]).

LEMMA 3.10. Let n € N, 52 = § (n), regular, completely Hausdorf or
completely regular and X be a & - minimal space. If x € X and x is not a
limit point for a non trivial sequence in X then Y = X\ {x} is a sequentially
% - closed space.

Proof. Let us assume that Yis not sequentially 52 - closed space. Then
there exists an open elementary £ - filter 551 on ¥ without adherent
points. Let 5, be the filter of neighbourhoods of the point x on X= We
consider the filter F = (U|U =V U W, V€ &, W E F.}. Obviously &
is an open elementary &2 - filter on X and x is the unique adherent point
for #. Let "ibe a maximal open elementary filter on Y containing 5.
Suppose that {q}kfldeterminﬂs F'1. But limag =x. Thus }?C Fr But

ke -

this contradicts to the 5 - minimality of X,

COROLLARY 3.11. Let X be a compact Hausdorf[ space and x € X. The
point x is not the limit of a some (non trivial) sequence of X iff X\ {x} is a
countably compact space.

FProof, Every compact Hausdorff space is a minimal completely regu-
lar space (see [Ba]), Now the corollary holds by Lemma 3.10 and Theo-









