TOPOLOGICAL SPACES WITH NO COMPACTLY DETERMINED EXTENSIONS

Ivan S. Gotchev

The \mathcal{P}-spaces with no compactly determined \mathcal{P}-extensions are characterized for $\mathcal{P} = LM_2$, \mathcal{T}_2 and \mathcal{T}_3. It is proved that every LM_2-closed space is compact. Examples of absolutely LM_2-closed spaces which are not compact are given.

An extension ν of a topological space X is called a compactly determined extension if for every point $y \in \nu \setminus X$ there is $x \in X$ such that $y \in \nu_x$ and ν_x is compact [3]. All compactly determined \mathcal{P}-extensions of a \mathcal{P}-space for $\mathcal{P} = \mathcal{T}_2$ and $\mathcal{P} = \mathcal{T}_2$ were characterized by L. Dostchinov [11] and I. Gotchev [12] in terms of supertopologies. In this paper the \mathcal{P}-spaces with no compactly determined \mathcal{P}-extensions are characterized for $\mathcal{P} = LM_2$, \mathcal{T}_2 and \mathcal{T}_3. A space X is an LM_2-space if every compact subspace of X is \mathcal{T}_2 [7]. Obviously $\mathcal{T}_2 \subseteq LM_2 \subseteq \mathcal{T}_4$. For $\mathcal{P} = LM_2$ the spaces with no compactly determined LM_2-extensions coincide with the absolutely LM_2-closed spaces. This fact was observed by B. Nikolov and E. Gulić. A \mathcal{P}-space X is absolutely \mathcal{P}-closed if for every \mathcal{P}-space $Z \in \mathcal{P}$ and for every embedding $h : X \to Z$ there exist a space $Y \in \mathcal{P}$ and two continuous maps $f, g : Z \to Y$ such that $h(x) = \{z \in Z | f(z) = g(z)\}$ (see [1], [12] and [13]). A \mathcal{P}-space X is \mathcal{P}-closed if X is a closed subspace in every \mathcal{P}-space in which it is embedded. In this paper also we will show that every LM_2-closed space is compact. Examples of absolutely LM_2-closed spaces which are not compact are given, which answer a question of B. Dikranjan and E. Gulić.

In this paper every topological space is \mathcal{T}_2 and every proximity δ in a topological space X will be compatible with the topology on X. (For the definition of proximity, see [14].) Let us recall that in a space X there exists a proximity δ if and only if X is a completely regular space.

Let X be a topological space, a subset A of X is δ-closed [8] if for every point $x \in X \setminus A$ there is a neighborhood U of x such that $U \cap A = \emptyset$ and A is δ-closed if for every closed set $F \subseteq X \setminus A$ there is an open set U of X such that $FU = \emptyset$ and $\overline{U} \cap A = \emptyset$.

Obviously, every δ-closed subset of X is δ-closed and every δ-closed subset of X is closed. If X is regular then every closed set in X is δ-closed and if X is normal then every closed set in X is δ-closed.

Let $A \subseteq X$ and δ be a proximity in A, we say that A is δ-placed in X if for every pair $B, C \subseteq A$ such that $B \cap C$ there are disjoint open sets U and V in X with $BU \subseteq A$ and $CV \subseteq A$.

It is clear that if A is δ-placed in X then A is a completely regular space and if X is a Hausdorff space then every compact subset B of X is
A subset \(A \) of \(X \) is compactly related to \(X \) if every filter of closed sets on \(X \) has empty intersection intersect \(A \).

Let \(X \) and \(Y \) be topological spaces, \(A \) be a closed set in \(X \) and \(f : A \to Y \) be a mapping. Then the adjunction space \(X \cup_f Y \) (see [4]) is denoted by \(X \cup_f A \) in the case \(A \subseteq Y \) and \(f : A \to Y \) is the identical embedding.

Lemma 1. Let \(A \) be a closed set in \(X \) and \(\delta A \) be a \(T_1 \)-compactification of \(A \).

Then \(X \) is compactly related to \(A \) if and only if \(X \cup_f \delta A \) is compact.

Proof: Let \(X \) be compactly related to \(A \) and let \(Y = X \cup_f \delta A \). We prove that \(Y \) is compact.

Let \(\mathcal{F} \) be an ultrafilter of closed sets on \(Y \). If there exists \(F \in \mathcal{F} \) such that \(F \cap X = \emptyset \), then \(F \cap \delta A = \emptyset \). Moreover \(A \) is a closed set in \(X \), hence \(\delta A \) is a closed set in \(Y \). Since \(\delta A \) is compact and \(F \cap \delta A = \emptyset \), then \(\mathcal{F} \) has a cluster point in \(\delta A \) and hence \(\mathcal{F} \) has a cluster point in \(Y \). Let now for every \(F \in \mathcal{F} \), \(F \cap X = \emptyset \). Then \(\mathcal{F}' = \{ F \cap X \mid F \in \mathcal{F} \} \) is an ultrafilter of closed sets in \(X \). If there exists \(F \in \mathcal{F}' \) such that \(F \cap X = \emptyset \), then \(F \cap \delta A = \emptyset \) and hence \(\mathcal{F} \) has cluster points in \(\delta A \) and hence \(\mathcal{F} \) has a cluster point in \(Y \). If every \(F \in \mathcal{F} \) meets \(\forall x \in Y \) then \(\mathcal{F} = \{ F : F \cap X = \emptyset \} \) is an ultrafilter of closed sets in \(X \). Suppose there exists \(F \in \mathcal{F} \) such that \(F \cap X = \emptyset \). Since \(X \) is a compactly related to \(A \) and consequently also \(\mathcal{F} \) has cluster points in \(Y \). If every \(F \in \mathcal{F} \) meets \(\forall x \in Y \setminus X \) then \(\mathcal{F} = \{ F : F \cap X = \emptyset \} \) is an ultrafilter of closed sets in \(X \). Then \(\mathcal{F} = \{ F : F \cap X = \emptyset \} \) and hence \(\mathcal{F} \) has a cluster point in \(Y \). Therefore \(Y \) is compact.

Now let \(Y = X \cup_f \delta A \) be compact. We will prove that \(X \) is compactly related to \(A \).

Let \(\mathcal{F} \) be an ultrafilter of closed sets in \(X \) and assume that \(\mathcal{F} \) has no cluster points. The space \(X \) is compact, hence the filter \(\mathcal{F}' = \{ F : F \cap X = \emptyset \} \) has a cluster point \(\infty \) in \(Y \). Since \(\infty \notin X \setminus X \), \(\mathcal{F} \) has a cluster point \(\infty \) in \(Y \).

Let us assume that there exists a closed set \(F \in \mathcal{F} \) such that \(F \cap A = \emptyset \). Then \(\infty \in X \setminus X \) is an open set in \(X \) and \(F \cap X = \emptyset \). Thus \(\infty \in Y \setminus X \) is an open neighborhood of \(\infty \) in \(Y \) and \(F \cap X = \emptyset \). Therefore \(\infty \in Y \setminus X \) and \(\infty \notin X \). Hence \(\infty \notin X \).

Corollary. Let \(A \) be a compact subspace of \(X \). Then \(X \) is compactly related to \(A \), if and only if \(X \) is compact.

Lemma 2. Let \(X \) be a Hausdorff space, \(A \) be a closed set of \(X \), \(\delta \) be a proximity in \(A \) and \(\delta A \) be the compactification of \(A \) related to \(\delta \) (see [4]). Then \(X \cup_f \delta A \) is a Hausdorff space if and only if \(A \) is \(\theta \)-closed and \(\delta \)-placed in \(X \).

Proof: Let \(Y = X \cup_f \delta A \) be a Hausdorff space. We shall prove that \(A \) is \(\delta \)-closed in \(X \). Let \(B \subseteq A \) and \(B \delta C \). It is easily seen that \(B \delta C \) if and only if \(\delta C \) is Hausdorff and compact, so there exist open sets \(U \) and \(V \) in \(Y \) such that \(B \subseteq U \), \(\delta C \subseteq V \) and \(U \cap V = \emptyset \). So if \(U \cap V = \emptyset \) then \(\infty \in Y \setminus X \), \(\delta A \subseteq \emptyset \setminus \delta A \) and \(\delta A \subseteq \emptyset \setminus \delta A \) and \(\infty \notin X \). Hence \(Y \) is a Hausdorff space, there exist open sets \(U \) and \(V \) in \(Y \) such that \(x \in U \), \(\delta A \subseteq V \) and \(U \cap V = \emptyset \). Thus \(Y \) is a Hausdorff space if and only if \(A \) is \(\theta \)-closed and \(\delta \)-placed in \(X \).

Now let \(A \) be \(\theta \)-closed and \(\delta \)-placed in \(X \). We will prove that \(Y = X \cup_f \delta A \) is a Hausdorff space. Let \(x \in U \), \(\delta A \subseteq V \) and \(\delta A \subseteq \emptyset \setminus \delta A \). The space \(X \setminus A \) is
open in Y and X is a Hausdorff space, so there exist disjoint open sets U and V in Y such that $x_1 \in U$ and $x_2 \in V$.

Now let $x_2 \in \delta A$. Since A is a δ-closed set in X then there exist open sets U and V in X such that $x_2 \in U$, $A \subset V$, and $U \cap \overline{V} = \emptyset$. Hence if $W = UV \cap \overline{V} \cap \emptyset$ then W is an open neighbourhood of x_2 in X. U is an open neighbourhood of x_2 in Y and $U \cap \overline{V} \cap \emptyset$. Let now $x_2 \in \delta A$. Since δA is a closed Hausdorff subspace in Y, there exist open sets U_1 and U_2 in δA such that $U_1 \cap \overline{U_2} = \emptyset$. Let $F_1 = \overline{U_1} \cap \overline{U_2} \cap \emptyset$ and $F_2 = \overline{U_1} \cap \overline{U_2} \cap \emptyset$. Clearly $F_1 \cap F_2$. Since A is δ-closed in X then there exist open sets U'_1 and U'_2 in X such that $F_1 \cap U'_1 \cap \overline{U'_2} = \emptyset$ and $U'_1 \cap \overline{U'_2} = \emptyset$. On the other hand there exist open sets U''_1 and U''_2 in X such that $U''_1 \cap \overline{U''_2} = \emptyset$. Thus if $V_1 = U''_1 \cap \overline{U''_2} = \emptyset$ and $V_2 = U''_1 \cap \overline{U''_2} = \emptyset$ then V_1 and V_2 are disjoint open sets in Y such that $x_1 \in V_1$ and $x_2 \in V_2$. Therefore Y is a Hausdorff space.

The following lemma could be proved in the same way as the above lemma.

Lemma 1. Let X be a regular space, A be a closed set in X, δ be a proximity in A and $\overline{\delta} A$ be the compactification of A, related to δ.

Then $\delta A \overline{\delta} A$ is a regular space if and only if A is δ-closed and δ placed in X.

Theorem 1. Let X be an LM_2-space. Then X has no compactly determined LM_2-extension if and only if every subset A of X which satisfies the following two conditions is compact.

i) Every compactly related to A subset of X is a Hausdorff space.

ii) There exists a proximity δ in A such that A is δ-closed and δ placed in every compactly related to A subset of X.

Proof. Let us assume that there exists a compactly determined LM_2-extension Y of X and $X \neq X$. We may assume without loss of generality that there exists a closed set A in X such that $\overline{\delta} Y$ is compact and $Y = XU\overline{\delta} Y$. We shall prove that A satisfies the conditions i) and ii). Let $Z \subset X$ be compactly related to A. Then $A \subset Z$ and δ will be a closed set in Z. Furthermore $ZU\overline{\delta} Y$ will be homeomorphic to $ZU\overline{\delta} Y$. By Lemma 1 we know that $ZU\overline{\delta} Y$ is compact. Thus $ZU\overline{\delta} Y$ is a compact subspace of Y. Since Y is LM_2, then $ZU\overline{\delta} Y$ is a Hausdorff space and hence Z is a Hausdorff space. If δ is the proximity of A induced by the standard proximity δ' of the compact space $\overline{\delta} Y$ then A will be δ'-closed and δ' placed in Z by Lemma 2. Therefore A satisfies the conditions i) and ii) but A is not compact - a contradiction.

Now assume that there exists $A \subset X$ such that the conditions i) and ii) are satisfied and A is not a compact space. Since A is compactly related to A ii) yields that A is a compactly regular space. Furthermore if $A \subset X$ then $A \cup \{x\}$ is compactly related to A by i) A is δ-closed in $A \cup \{x\}$. Hence A is a closed set in X. Let $\overline{\delta}$ be the proximity in A which satisfies ii) and let $\overline{\delta} A$ be the compactification of A related to $\overline{\delta}$. Set $Y = XU\overline{\delta} A$, clearly Y is a compactly determined extension of X. We will prove that Y is an LM_2-space. Let $Z \subset Y$ be a compact subspace. Without loss of generality we may assume that $\overline{\delta} A \subset Z$. For $Z \subset Z\overline{\delta} A$ the space $ZU\overline{\delta} A$ is homeomorphic to $Z\overline{\delta} A$. By Lemma 1 and by the compactness of $ZU\overline{\delta} A$ it follows that Z is compactly related to A. But by i) Z is a Hausdorff space and by Lemma 2 Z is a Hausdorff space.

The above result is in fact a characterization of the absolutely LM_2-closed spaces.

Theorem 2. A Hausdorff space X has no Hausdorff compactly determined extensions if and only if every δ-closed and δ-placed subset of X is compact.
Proof. Follows by Lemma 2.

Theorem 3. A regular space X has no regular compactly determined extensions if and only if every G-closed and G-placed subset of X is compact.

Proof. Follows by Lemma 3.

Now we will show that every LM_2-closed space is compact.

Lemma 4. Let ∞ be a non-isolated point for a topological space X. If ∞ has no compact neighborhood in X, then X is not an LM_2-closed space.

Proof. Let us assume that for some non-isolated point $\infty \in X$ there is no open set U in X such that $\infty \in U$ and \overline{U} is compact. We consider the space $Y = X \cup \{y\}$ where $y \notin X$ with the following topology: $\{y\}$ is a closed set and for a base of neighborhoods of $\{y\}$ we take the family \(\{U \cup (y \cap F) \cup \{y\}\} \), where V is an open set in X, $\infty \in V$ and F is a compact set in X. It is easily seen that it is a topology on Y. We will prove that Y is an LM_2 space. Let $A \subseteq Y$ and A be a compact subspace. If $y \notin A$ then $A \subseteq X$ and X is Hausdorff compact. Now let $y \in A$, then $\{y\} \cup A$ is compact. If U_X and U_y are the filters of neighborhoods of ∞ and y on Y then for every $U \in U_X$ we have $U \cup \{y\} \in U_Y$. Thus $F = (\overline{U} \cup \{y\}) \setminus \{y\}$ is a compact space in X and hence F is a closed set in X. Thus there exists a neighborhood U of ∞ in X such that $U \setminus \{y\} \neq \emptyset$. Therefore $W = \{y\} \cup (U \setminus F)$ is a neighborhood of y in Y avoiding F, hence y is an isolated point in A. Thus Y is an LM_2-extension of X, then X is not an LM_2-closed space.

Lemma 5. Let X be an LM_2-space. If every point in X has a compact neighborhood in X, then X is a Hausdorff space.

Proof. It is obvious.

Theorem 4. An LM_2-space X is LM_2-closed if and only if X is a compact Hausdorff space.

Proof. It is obvious that if X is a compact Hausdorff space then X is an LM_2-closed space. Now let X be an LM_2-closed space. By Lemma 4 it follows that every point $x \in X$ has an open neighborhood with compact closure. Thus by Lemma 5 X is a locally compact Hausdorff space. Therefore X is a completely regular space and by the closedness, X is a compact.

The following example shows that there exists an absolutely LM_2-closed space which is not compact.

Example. Let $X = [0, 1]$ and \mathcal{T} be the usual topology on X. Let \mathcal{T}_f be the coarsest topology on X such that $\mathcal{T} \subseteq \mathcal{T}_f$ and $\{\frac{1}{n}\}_{n=1}^{\infty}$ is a closed set in \mathcal{T}_f. Then (X, \mathcal{T}_f) is LM_2-closed but it is not even countably compact.

Proof. The absolute LM_2-closedness of (X, \mathcal{T}_f) may be proved by means of Theorem 1. Obviously X is not countably compact.

Other examples of LM_2 spaces which have no compactly determined extensions and which are not Hausdorff compact may be obtained from the following result which we give without proof.

Theorem 5. Let X be a first countable compact Hausdorff space and there are two dense, disjoint sets D_1 and D_2 such that $D_1 \cup D_2 = X$. Let \mathcal{T}_f be the coarsest topology on X such that $\mathcal{T} \subseteq \mathcal{T}_f$ and $D_1 \in \mathcal{T}_f$. Then (X, \mathcal{T}_f) is absolutely LM_2-closed.

The author thanks J. Dikranjan for his valuable suggestions and encouragement.
REFERENCES

155