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Abstract. An important task in the theory of hypercubes is to
establish the maximum integer fn such that for every set F of f
vertices in the hypercube Qn, with 0 ≤ f ≤ fn, there exists a cycle
of length at least 2n − 2f in the complement of F . Until recently,
exact values of fn were known only for n ≤ 4, and the best lower
bound available for fn with n ≥ 5 was 2n−4. We prove that f5 = 8
and obtain the lower bound fn ≥ 3n− 7 for all n ≥ 5. Our results
and an example provided in the paper support the conjecture that
fn =

(
n
2

)
− 2 for each n ≥ 4. New results regarding the existence

of longest fault-free paths with prescribed ends are also proved.

1. Introduction

When f “faulty” vertices of the same parity are deleted from the
n−dimensional binary hypercube Qn, the length of the longest fault-
free cycle cannot exceed 2n−2f. A natural question is to determine the
maximum integer fn such that for every set F of f deleted vertices,
with 0 ≤ f ≤ fn, there exists a cycle of length at least 2n − 2f in
the complement of F . Due to applications in parallel computing, this
question have been studied by several authors in the last two decades.
However, the exact value of fn for an arbitrary n is yet to be estab-
lished.

The best result available in the literature is due to J-S. Fu who proved
in [F] the following theorem. (We follow the notation and terminology
of [Di] unless we explicitly specify otherwise.)
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Theorem 1.1 ([F]). Let n ≥ 3 and F be a set of vertices in Qn of
cardinality f ≤ 2n − 4. Then there exists a cycle in Qn − F of length
at least 2n − 2f.

Fu’s result is sharp for n = 3 and n = 4, and his lower bound of 2n− 4
for fn was a considerable improvement over previous lower bounds
found, for example in [T] and [YTR], where the lower bound did not
exceed the dimension. On page 831 of his paper, Fu also made the
following remark: “However, it is not easy to prove that a fault-free
cycle of length of at least 2n − 2f cannot be embedded in an n−cube
with f faulty nodes, where n ≥ 5 and f ≥ 2n− 3.”

The main theorem in this paper, with which we improve Fu’s theorem
(Theorem 1.1), is the following:

Theorem 1.2. Let n ≥ 5 and f be integers with 0 ≤ f ≤ 3n−7. Then
for any set F of vertices in Qn of cardinality f there exists a cycle in
Qn −F of length at least 2n − 2f.

As it follows from our theorem, when n = 5, for example, it is possible
to embed a fault-free cycle of length of at least 2n − 2f in the n−cube
with f faulty nodes, where f = 7 or f = 8 which responds to Fu’s
remark. The following counterexample shows that this is not always
possible when f = 9. Therefore, we establish that f5 = 8.

Let n ≥ 4, v be any vertex inQn, S2(v) be the set of vertices at distance
2 from v, w be any vertex in S2(v), and F = S2(v) \ {w}. If there were
a cycle of length 2n − 2|F| in Qn −F it would have to pass through v
and through at least two distinct vertices in S2(v) which is impossible.
This proves that fn ≤

(
n
2

)
− 2 for n ≥ 4.

Fu’s Theorem shows that the upper bound
(

n
2

)
− 2 for fn is sharp for

n = 4 and our results show that it is sharp for n = 5. This motivates
the following conjecture:

Conjecture 1.3. Let n ≥ 4 and f be integers with 0 ≤ f ≤
(

n
2

)
− 2.

Then for any set F of vertices in Qn of cardinality f there exists a
cycle in Qn −F of length at least 2n − 2f.

It is clear that if f “faulty” vertices of one parity are deleted from the
hypercube Qn then the length of the longest path connecting any two
non-deleted vertices u, v of that parity cannot exceed 2n − 2f − 2. If
one of the vertices u, v is even and the other is odd then the length of
the longest path connecting them cannot exceed 2n − 2f − 1. In [F1]
the author proves that if F is a set of cardinality f ≤ n− 2 then: (1)
a path of length 2n − 2f − 1 is guaranteed to exist in Qn −F between
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any two vertices of opposite parity in Qn−F ; and (2) a path of length
2n − 2f − 2 is guaranteed to exist in Qn −F between any two vertices
of the same parity in Qn−F . In Section 3 we improve these two results
by allowing f ≤ n − 1 in Case (2) without any extra conditions (see
Corollary 3.12), and f ≤ n in Case (1) with the extra natural condition
that at least one neighbor of each end vertex is not the other end vertex
and also is not in F (see Theorems 3.9 and 3.11). In Theorem 3.13 we
improve the result mentioned in Case (1) in a different direction. We
show that if e is an edge that is not incident to any of the faults and the
end vertices then the above mentioned path with length 2n−2f−1 can
be chosen to pass through e. More results about Hamiltonian paths or
cycles with prescribed edges in Qn can be found in [D] and in [DG].

When additional information regarding the parity of the deleted ver-
tices and of the end vertices is available one should expect to obtain
better estimates for the lengths of longest fault-free paths and cycles.
A conjecture of Locke [L] states that if the number of deleted vertices
from Qn is f = 2k ≤ 2n − 4, with k deleted vertices of each parity,
then a fault-free cycle of length 2n − f in Qn exists. A proof of this
conjecture for k = 1 is contained in [LS] and for k ≤ 4 in [CG2]. More
results related to Locke’s conjecture can be found in [CG1]. Castañeda
and Gotchev have also conjectured that if the number of deleted ver-
tices from Qn is f = 2k + 1 ≤ 2n − 5, with k even and k + 1 odd
deleted vertices, then for any two non-deleted even vertices there ex-
ists a Hamiltonian path (of length 2n − f − 1) in the complement of
the set of deleted vertices with the two even vertices at the ends [CG2,
Conjecture 6.2]. Somehow related to this conjecture is Theorem 4.3
in this article, which states that if f < n vertices of one parity are
deleted from Qn, then for any two given non-deleted vertices of the op-
posite parity there is a fault-free path of the maximal possible length
of 2n − 2f with the two given vertices at the ends. The same theorem
also contains a similar result for f = n with the natural additional con-
dition that at least one neighbor of each of the prescribed end vertices
is non-deleted.

This article is organized as follows. In Section 2 we introduce the basic
definitions and notation used in this paper. Section 3 contains several
results regarding the existence of longest path in faulty hypercubes
when the ends of the path are prescribed. Section 4 contains some
facts regarding longest paths with prescribed ends when additional in-
formation about the parity of the faulty vertices and of the end vertices
is known. To avoid making the paper too long, in that section we re-
strict ourselves to consider only the case when all the deleted vertices



4 NELSON CASTAÑEDA AND IVAN S. GOTCHEV

are of the same parity which is the case that we use later in the paper.
Section 5 deals with the case n = 5, and Section 6 with the case n > 5,
of the proof of the main theorem. Some of our proofs use results from
the article [CG2] that are summarized in a table in Appendix A. Fi-
nally, Appendices B and C contain tables for special cases of the proof
of Theorem 3.11.

2. Preliminaries

The n−dimensional binary hypercube Qn is the graph with a vertex
set V(Qn) containing all binary sequences of length n and whose edges
are pairs of binary sequences that differ in exactly one position. If
a = (a1, . . . , an) is a vertex inQn then Pi(a) = ai is the i−th component
of a. The subgraphs ofQn induced by P−1

i (1) and P−1
i (0) will be refered

to as plates. We call the plates top and bottom plates and denote
them by Qtop

n and Qbot
n . Clearly, each plate is isomorphic to an (n −

1)−dimensional hypercube. If A is a set of vertices in Qn then we set
Atop = A ∩ V(Qtop

n ) and Abot = A ∩ V(Qbot
n ). A given vertex is called

even if it has an even number of 1’s in its components; otherwise the
vertex is called odd. In the sequel r, r1, . . . represent vertices of one
parity in Qn that we call red and g, g1, . . . represent vertices of the
opposite parity, that we call green. Regarding a pair of vertices we say
that the pair is charged if the two elements in the pair are of the same
parity and that the pair is neutral if the two elements are of opposite
parity. We call a pair green (red) if both vertices are green (red).

A fault F in Qn is a set of deleted vertices. The mass M of a fault F
is the total number of vertices in the fault. Let r(F) be the number
of red vertices and g(F) be the number of green vertices in a fault F
of Qn. The charge of a fault F is the number C = |r(F)− g(F)|. Let
also E be a set of disjoint pairs of vertices of Qn, r(E) be the number
of red pairs in E , and g(E) be the number of green pairs in E . We say
that the set of pairs E is in balance with the fault F if all the vertices in
the elements of E are from Qn −F and r(F)− g(F) = g(E)− r(E). A
path covering of a graph G is a set of vertex disjoint paths that covers
all the vertices of G. When the endpoints of a path are of the same
parity (color) we say that the path is charged ; otherwise we say that
the path is neutral. An obvious necessary condition for a set E of pairs
of vertices to be the set of endpoints of a path covering of Qn − F is
that E be in balance with F .

Definition 2.1. Let M,C,N,O be nonnegative integers and F be a
fault of mass M and charge C in Qn. We say that one can freely
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prescribe ends for a path covering of Qn−F with N neutral paths and
O charged paths if

(i) there exists at least one set E of disjoint pairs of vertices that
is in balance with F and contains exactly N neutral pairs and
O charged pairs; and

(ii) for every set E of disjoint pairs of vertices that is in balance
with F and contains exactly N neutral pairs and O charged
pairs there exists a path covering of Qn−F such that the set of
pairs of end vertices of the paths in the covering coincides with
E .

It is easy to see that if in Qn there exists a fault F of mass M and
charge C, and a set of pairs of vertices E that is in balance with F
and contains exactly N neutral pairs and O charged pairs, then 2n ≥
M + C + 2N + 2O.

Let AM,C,N,O be the set of nonnegative integers m such that

(i) m ≥ log2 [M + C + 2N + 2O]; and
(ii) for every n ≥ m and for every fault F of mass M and charge

C in Qn one can freely prescribe ends for a path covering of
Qn −F with N neutral paths and O charged paths.

We let [M,C,N,O] denote the smallest element in AM,C,N,O if this set
is nonempty. All known to us values of [M,C,N,O] are given in a table
in Appendix A for easy reference. More information can be found in
[CG2].

It is convenient to identify the hypercube Qn with the group Zn
2 . We

view Qn as a Cayley graph with the standard system of generators
S = {e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1)}. An
oriented edge in Qn is represented by (r, x), where r is the starting
vertex and x is an element from the system of generators S. A walk
is represented by (r, ξ; g), where r is the initial vertex, g is the end
vertex, and ξ is a word with letters from S. If ξ = x1x2 · · ·xk then
the walk (r, ξ; g) is the walk r, rx1, rx1x2, . . . , rx1x2 · · · xk = g. The
algebraic content of a word ξ is the element of Zn

2 that is obtained
by multiplying all the letters of ξ. If r is a vertex, rξ is the vertex
obtained by multiplying r with the algebraic content of ξ. If ξ is the
empty word then rξ = r. A walk (r, ξ; g) is a path if no subword of ξ
is algebraically equivalent to the identity (0, 0, . . . , 0). A walk (r, ξ; g)
is a cycle if r = g, ξ is algebraically equivalent to the identity, and no
proper subword of ξ is algebraically equivalent to the identity. Instead
of (r, ξ; r) we denote cycles simply by (r, ξ).
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We shall use the following notation: ξR means the reverse word of ξ;
ξ′ denotes the word obtained after the last letter is deleted from ξ; ξ∗

is the word obtained after the first letter is deleted from ξ; ϕ(ξ) is the
first letter of ξ, and λ(ξ) is the last letter of ξ. The letter v shall be
reserved for steps connecting two plates and the letters x, y, ... shall be
reserved to represent steps along the plates. If A is a set of vertices
and x is any letter in S then xA is the set of all vertices of the form ax
with a ∈ A.
If G is a graph and r is a vertex in G then by V(G) we denote the set of
all vertices of G and by N (r) the set of all vertices in G adjacent to r.
If a, b are two vertices in Qn then by dH(a, b) we denote the Hamming
distance between a and b, i.e. the number of components where a and
b differ. By Sk(a) we denote the set of vertices at distance k from a.
Finally, for a set A, by |A| we denote the cardinality of A.

3. Longest paths with prescribed ends

In this section we improve all known to us results about longest paths
with prescribed ends in hypercubes with faulty vertices. Theorem 3.1
below has its origin in Lemma 2 and Lemma 4 in [F] and is essentially
that part of Theorem 2 in Fu’s recent paper [F1] that deals with end
vertices of the same parity. The part of Fu’s result that deals with end
vertices of the same parity is contained in Corollary 3.10 and improved
in Corollary 3.12 where up to n − 1 faults are allowed. Theorem 3.1
itself is generalized in two different ways in this section: (1) in Lemma
3.9, and Theorem 3.11, it is extended to allow up to n faults under the
mild condition that each end vertex does not get immediately blocked
by the fault and the other end vertex; and (2) in Theorem 3.13 where
the same n − 2 faults are allowed but the path is required to pass
through an arbitrary prescribed edge that is not incident to the end
vertices or any of the faults.

Our proofs in this section take advantage of recent results from [CG2]
summarized in Table 1 in Appendix A.

Theorem 3.1. Let n and f be integers with either n = 1 and f = 0
or n ≥ 2 and 0 ≤ f ≤ n− 2. Let also F be a set of vertices in Qn with
cardinality f. Then for any neutral pair of vertices r, g of Qn−F there
exists a path in Qn −F of length at least 2n − 2f − 1 that goes from r
to g.

Proof. The proof is by induction on f. When f = 0 the statement is
equivalent to Havel’s lemma [0, 0, 1, 0] = 1 (see [H] or [CG2, Lemma
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3.2]). If f = 1 and n ≥ 4 the statement follows easily from [2, 0, 1, 0] =
4 ([CG2, Lemma 3.10]). If f = 1 and n = 3 the statement can be
verified by inspection. Indeed, without loss of generality we can assume
that F consists of a single red vertex r∗; that r = r∗xy; and that g is
ry, or rz or rxyz for three distinct letters x, y, z. The desired path is
then (r, zxyxz; g), (r, yzxyx; g) or (r, yzyxy; g), respectively.

Assume now that f? > 1 is an integer such that the statement of the
lemma is true for all pairs of integers f, n with 0 ≤ f < f? and n ≥ f+2.
We shall prove that the statement is also true for any pair f?, n with
n ≥ f? + 2.

Let n ≥ f? + 2. Split Qn into two plates in such a way that if f0 =
|V(Qbot

n )∩F| and f1 = |V(Qtop
n )∩F| then 0 < f0 ≤ f1 < f?. There are

two cases to consider: (1) r and g are on the same plate; (2) r and g
are on different plates.

Case (1). We assume that r and g are on the top plate. The same proof
works for the case when they are on the bottom plate. By the induction
hypothesis there exists a path (r, ξ; g) of length at least 2n−1 − 2f1 − 1
in Qtop

n −F . Since the path is long enough, we can find words η, θ such
that ξ = ηθ and neither rηv nor rηϕ(θ)v is in F . By the induction
hypothesis again, there is a path (rηv, µ; rηϕ(θ)) of length at least
2n−1 − 2f0 − 1 in Qbot

n − F . The path (r, ηvµvθ; g) is the desired path
of length at least 2n − 2f? − 1 in Qn −F .
Case (2). Without loss of generality we can assume that r is in Qtop

n

and g is in Qbot
n . Let g1 be any green vertex in Qtop

n − F such that
g1v 6∈ F . By the induction hypothesis there exist a path (r, ξ; g1) of
length at least 2n−1 − 2f1 − 1 in Qtop

n − F and a path (g1v, η; g) of
length at least 2n−1 − 2f0 − 1 in Qbot

n − F . The path (r, ξvη; g) is the
desired path of length at least 2n − 2f? − 1 in Qn −F . �

Lemma 3.2. Let n ≥ 3, r? be a red vertex in Qn, and r and g be a
red and a green vertex in Qn− (N (r?)∪{r?}). Then there exists a path
(r, ξ; g) of length at least 2n − 2n− 1 in Qn − (N (r?) ∪ {r?}).

Proof. The statement is obvious for n = 3. Let n∗ be a positive integer
such that the statement of the lemma is true for all n with 3 ≤ n < n∗.
We shall prove that the statement is also true for n∗.

Split Qn∗ into two plates so that r ∈ V(Qtop
n∗ ) and g ∈ V(Qbot

n∗ ). We
assume that r? ∈ V(Qtop

n∗ ). Similar proof works for the case when r? ∈
V(Qbot

n∗ ). Let g1 be a green vertex in Qtop
n∗ − (N (r?) ∪ {r?}). By the

induction hypothesis there is a path (r, η; g1) of length at least 2n∗−1−
2(n∗−1)−1 in Qtop

n∗ −(N (r?)∪{r?}). Observe that there is at most one
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element ofN (r?) in the bottom plate. Therefore, by Theorem 3.1, there
is a path (g1v, θ; g) of length at least 2n∗−1−2−1 inQbot

n∗−(N (r?)∪{r?}).
The path (r, ηvθ; g) is the desired path of length at least 2n∗ − 2n∗− 1
in Qn∗ − (N (r?) ∪ {r?}). �

Corollary 3.3. Let n ≥ 3, r? be a red vertex in Qn, and g be a green
vertex in Qn−N (r?). Let also F ⊂ N (r?) with |F| ≤ n−1. Then there
exists a path (g, ξ; r?) of length at least 2n − 2(n− 1)− 1 in Qn −F .

Proof. Let g? ∈ N (r?) \ F and r ∈ N (g?) \ {r?}. By Lemma 3.2, there
is a path (g, η; r) of length at least 2n− 2n− 1 in Qn− (N (r?)∪{r?}).
The desired path of length 2n − 2(n− 1)− 1 in Qn −F is (g, ηxy; r?),
where rx = g?, and g?y = r?. �

Corollary 3.4. Let n ≥ 3, and r and r? be two red vertices in Qn. Let
also F ⊂ N (r?) with |F| ≤ n− 1 and g be a vertex in N (r?) \F . Then
there exists a path (r, ξ; g) of length at least 2n−2(n−1)−1 in Qn−F .

Proof. Split Qn into two plates with r? ∈ V(Qtop
n ) and g ∈ V(Qbot

n ).
Observe that F ∩ V(Qbot

n ) = ∅. There are two cases to consider: (1) r
is on the top plate; (2) r is on the bottom plate.

Case (1). Let g1 be any green vertex in Qtop
n − N (r?). By Lemma

3.2 there is a path (r, η; g1) of length at least 2n−1 − 2(n − 1) − 1 in
Qtop

n − (N (r?) ∪ {r?}). By Havel’s lemma [0, 0, 1, 0] = 1 [H] (or by
Theorem 3.1) there is a path (g1v, θ; g) of length 2n−1 − 1 in Qbot

n . The
desired path of length at least 2n−2(n−1)−1 in Qn−F is (r, ηvθ; g).

Case (2). If n = 3 the desired path is the Hamiltonian path in Qbot
n

that connects r to g. Let n ≥ 4. Produce a Hamiltonian path (r, η; g)
of Qbot

n . There exist words µ and ν such that µν = η and neither
rµv nor rµϕ(ν)v is in N (r?)∪ {r?}. By Lemma 3.2 there exists a path
(rµv, ζ; rµϕ(ν)v) of length at least 2n−1−2(n−1)−1 in Qtop

n −(N (r?)∪
{r?}). The desired path of length at least 2n − 2(n− 1)− 1 in Qn −F
is (r, µvζvν; g). �

Proposition 3.5. Let n ≥ 2 and F be a set of vertices in Qn of
cardinality |F| = n + 1 such that for each 1 ≤ i ≤ n the cardinality of
P−1

i (0)∩F is either 1 or n. Then F = N (s)∪{s} for some s ∈ V(Qn).

Proof. The statement is obvious for n = 2. Assume now that n ≥ 3.
Let s = (s1, . . . , sn) be such that si = 0 if |P−1

i (0) ∩ F| = n and
si = 1 otherwise. For every 1 ≤ i ≤ n there exists a unique vertex
a(i) ∈ F \ {s} such that Pi(a(i)) 6= si. Clearly every vertex in F \ {s}
differs from s at least at one component. Therefore

a : {1, . . . , n} −→ F \ {s}
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defined by the condition Pi(a(i)) 6= si is an onto function. Since the
cardinality of F \ {s} is at least n it follows that a is also one-to-one.
Therefore, if i 6= j then a(i) 6= a(j), hence a(i) ∈ N (s) for every
i. Thus F \ {s} = N (s) and since |F| = n + 1 we conclude that
F = N (s) ∪ {s}. �

Corollary 3.6. Let n ≥ 2, A ⊂ {1, 2, . . . , n}, and F be a set of vertices
in Qn of cardinality |F| = |A|+1 such that for each i ∈ A the cardinality
of P−1

i (0) ∩F is either 1 or |F| − 1 and for each i 6∈ A the cardinality
of P−1

i (0)∩F is either 0 or |F|. Then F = (N (s)∩V(Q′))∪{s}, where
Q′ is an |A|−dimensional subhypercube of Qn and s is a vertex in Q′.
Corollary 3.7. Let n ≥ 2 and F be a set of vertices in Qn of cardinality
|F| = n. Assume that for some index 1 ≤ i0 ≤ n the cardinality of
P−1

i0
(0) ∩ F is either 0 or n and that for all other 1 ≤ i ≤ n the

cardinality of P−1
i (0) ∩ F is either 1 or n− 1. Let Q′ be the hypercube

with vertex set P−1
i0

(0) if |P−1
i0

(0) ∩ F| = n and with vertex set P−1
i0

(1)
otherwise. Then there exists a vertex s ∈ V(Q′) such that F = (N (s)∩
V(Q′)) ∪ {s}.
Proposition 3.8. Let n ≥ 2 and F be a set of vertices in Qn of
cardinality |F| = n such that for each 1 ≤ i ≤ n the cardinality of
P−1

i (0)∩F is either 1 or n−1. Then either F = N (s) for some vertex
s ∈ V(Qn) or there exist two vertices s, t ∈ V(Qn), with dH(s, t) = 2,
such that F consists of s, t and all the vertices of N (s) except the two
vertices that are common neighbors of s and t.

Proof. The statement is obvious for n = 2. Assume now that n ≥ 3.
Let s = (s1, . . . , sn) be such that si = 0 if |P−1(0) ∩ F| = n − 1 and
si = 1 otherwise. For every 1 ≤ i ≤ n there exists a unique vertex
a(i) ∈ F \ {s} such that Pi(a(i)) 6= si. Clearly every vertex in F \ {s}
differs from s at least at one component. Therefore

a : {1, . . . , n} −→ F \ {s}
defined by the condition Pi(a(i)) 6= si is an onto function. If |F \{s}| =
n then a is also one-to-one and therefore F = N (s). If |F \{s}| = n−1
then s ∈ F , and also, there exist unique i, j ∈ {1, . . . , n}, i 6= j, such
that a(i) = a(j) = t for some vertex t ∈ F ; hence dH(s, t) = 2. Clearly,
a(k) ∈ N (s), for k 6= i, j, and also the common neighbors of s and t
are not in the range of a and therefore, are not in F . �

The following theorem generalizes Lemma 6 in [F].

Theorem 3.9. Let n ≥ 3 and F be a set of vertices of Qn of cardinality
|F| = n−1. Let also r be a red vertex and g be a green vertex in Qn−F
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such that F ∪ {r} 6= N (g) and F ∪ {g} 6= N (r). Then there exists a
path (r, ξ; g) of length at least 2n − 2(n− 1)− 1 in Qn −F .

Proof. If F ⊂ N (r) or if F ⊂ N (g) then the statement follows from
Corollary 3.3. Therefore we can assume that F 6⊂ N (r) and F 6⊂ N (g).

The statement is easy to verify for n = 3. Assume now that n ≥ 4. Split
Qn into two plates such that r and g are in different plates. Without
loss of generality we can assume that r ∈ V(Qtop

n ). We can also assume
that 0 ≤ f0 = |F bot| ≤ f1 = |F top|. There are two cases to consider:
(1) f1 ≤ n− 2; and (2) f1 = n− 1.

Case (1). Let g1 be any green vertex in Qtop
n − F such that g1v 6∈ F .

According to Theorem 3.1 there exists a path (r, η; g1) of length at
least 2n−1−2f1−1 in Qtop

n −F , and a path (g1v, θ; g) of length at least
2n−1 − 2f0 − 1 in Qbot

n − F . The path (r, ηvθ; g) is the desired path of
length at least 2n − 2(n− 1)− 1 in Qn −F .
Case (2). Let n = 4. There exists a green vertex g1 = rx ∈ V(Qtop

n )−F .
Let (g1v, ξ; g) be a Hamiltonian path in Qbot

n . Then the path (r, xvξ; g)
is a path with length nine, as it is required.

To prove our claim for each n ≥ 5 we proceed by induction on n.
Assume that N ≥ 5 is any integer and that the statement is true for
all integers n with 4 ≤ n < N. We shall prove that the statement is
also true for N.

Let a be any vertex in F \N (r) and g1 be any green vertex in Qtop
N −F

such that (F \ {a}) ∪ {g1} 6= N (r) ∩ V(Qtop
N ) and (F \ {a}) ∪ {r} 6=

N (g1) ∩ V(Qtop
N ). By the induction hypothesis there is a path (r, η; g1)

of length at least 2N−1 − 2(N − 2) − 1 in Qtop
N − (F \ {a}). There are

three subcases: (i) a is not in the path (r, η; g1); (ii) a = rη′ (iii) a is
in the path (r, η; g1) but a 6= rη′.

Subcase (i). By Havel’s lemma [0, 0, 1, 0] = 1 [H] there is a path
(g1v, θ; g) of length 2N−1 − 1 in Qbot

N . The path (r, ηvθ; g) is a path
of length at least 2N − 2(N − 2)− 1 in QN −F .
Subcase (ii). By Havel’s lemma [0, 0, 1, 0] = 1 [H] there is a path
(rη′′v, θ; g) of length 2N−1 − 1 in Qbot

N . The path (r, η′′vθ; g) is a path
of length at least 2N − 2(N − 1)− 1 in QN −F .
Subcase (iii). There exist words µ and ν such that η = µν and a = rµ.
Since a 6= rη′ the length of ν is at least two and since a is not a
neighbor of r the length of µ is also at least two. Clearly g is not
contained in at least one of the two disjoint sets A1 = {rµ′′v, g1(ν

R)′v}
or A2 = {rµ′v, g1(ν

R)′′v}.
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Let us assume first that g /∈ A1. Since [0, 0, 2, 0] = 2 (see [D] or [CG2,
Lemma 3.3]), there is a 2−path covering (rµ′′v, θ; g1(ν

R)′v), (g1v, ζ; g)
of Qbot

N . Therefore, the path (r, µ′′vθvν∗vζ; g) is the desired path of
length at least 2N − 2(N − 1)− 1 in QN −F .
Let us assume now that g ∈ A1, hence g /∈ A2. If the length of ν is
more than two then g1(ν

R)′′ 6= g1, and since [0, 0, 2, 0] = 2 (see [D]
or [CG2, Lemma 3.3]), there is a 2−path covering (rµ′v, θ; g1(ν

R)′′v),
(g1v, ζ; g) of Qbot

N . The path (r, µ′vθvν∗∗vζ; g) is the desired path of
length at least 2N − 2(N − 1) − 1 in QN − F . If the length of ν is
two then g = rη′v. Let r1 ∈ Qbot

N be a red vertex different from g1v.
Since N ≥ 5 and [2, 0, 1, 0] = 4 ([CG2, Lemma 3.10]) there exists a
Hamiltonian path (rµ′v, θ; g1v) for Qbot

N − {r1, g} of length 2N−1 − 3.
The path (r, µ′vθvϕ(νR)v; g) is the desired path of length at least 2N −
2(N − 1)− 1 in QN −F . �

Corollary 3.10. Let n ≥ 2 and f be integers with 0 ≤ f ≤ n− 2 and
F be a set of vertices in Qn of cardinality f. Then for any pair of green
vertices g1, g2 in Qn−F there exists a path of length at least 2n−2f−2
in Qn −F that goes from g1 to g2.

Proof. The statement is obvious if n = 2. Let n ≥ 3 and r = g2x
be a neighbor of g2 in Qn such that F ∪ {g1, g2} 6= N (r). Obviously
F ∪ {r} ∪ {g2} 6= N (g1). Therefore, by Theorem 3.1, in the case when
f ≤ n−3, and by Theorem 3.9, in the case when f = n−2, there exists
a path (g1, ξ; r) of length at least 2n− 2(f + 1)− 1 in Qn− (F ∪{g2}).
The path (g1, ξx; g2) is the desired path of length at least 2n − 2f − 2
in Qn −F . �

Theorem 3.11. Let n ≥ 3 and F be a set of vertices in Qn of car-
dinality |F| = n. Let also r be a red vertex and g be a green vertex in
Qn − F such that N (g) 6⊂ F ∪ {r} and N (r) 6⊂ F ∪ {g}. Then there
exists a path of length at least 2n − 2n− 1 in Qn −F that goes from r
to g.

Proof. The statement is obvious for n = 3. We give a separate proof
for n = 4 and use mathematical induction for n ≥ 5.

Let n = 4 and let F be any fault of mass 4 in Q4. We have to exhibit
paths of length at least 2n − 2n − 1 = 7 in Q4 − F that go from g to
r. There are three cases to consider: (1) there is a splitting of Q4 such
that f0 = |F bot| = 0, and f1 = |F top| = 4; (2) there is a splitting of
Q4 such that f0 = |F bot| = 1, and f1 = |F top| = 3; and (3) for every
splitting of Q4 there are exactly two deleted vertices on each plate.

Case (1). The four deleted vertices are on Qtop
4 .
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Subcase (i). r and g are on Qtop
4 .

Let (rv, η; gv) be a Hamiltonian path ofQbot
4 . The desired path of length

at least 7 in Q4 −F is (r, vηv; g).

Subcase (ii). r and g are on Qbot
4 .

A Hamiltonian path of Qbot
4 that goes from r to g does the job in this

case.

Subcase (iii). r is on Qtop
4 and g is on Qbot

4 .

If rv 6= g then there exists a path (rv, η; g) of length six in Qbot
4 . Then

the path (r, vη; g) does the job in this case.

Now, let rv = g. Since N (r) 6⊂ F ∪ {g}, there exists a letter x 6= v
such that rx 6∈ F . Let (rxv, η; g) be a Hamiltonian path of Qbot

4 . The
desired path of length at least 7 in Q4 is (r, xvη; g).

Subcase (iv). g is on Qtop
4 and r is on Qbot

4 .

This subcase is equivalent to Subcase (iii).

Case (2). There are exactly three deleted vertices on the top plate.

Without loss of generality we may assume that the deleted vertex on
Qbot

4 is a red vertex r1.

Subcase (i). r and g are on Qtop
4 .

If gv 6= r1, then by Theorem 3.1 there is a path (rv, ξ; gv) of length 5
in Qbot

4 −{r1}. The desired path of length at least 7 in Q4 is (r, vξv; g).

If gv = r1, then there is a letter x 6= v such that gx 6∈ F . There is also
a path (rv, η; gxv) that is Hamiltonian in Qbot

4 −{r1}. The desired path
of length at least 7 in Q4 is (r, vηvx; g).

Subcase (ii). r and g are on Qbot
4 .

For any choice of r, g, and r1 there exist two different r− g paths P1 :
(r, x1x2x3x4x5; g) and P2 : (r, y1y2y3y4y5; g) of length five in Qbot

4 − r1
such that rx1 is not a vertex in P2 and ry1 is not a vertex in P1 (the
three essentially different cases are shown in Table 2 in Appendix B).
For convenience let ξi = x1 . . . xi, ηi = y1 . . . yi for i = 1, . . . , 5 and let
ξ0 = η0 = ∅ be empty words. If rξi−1v and rξiv are not faulty vertices
for some i then the desired path is (r, ξi−1vxivxi+1 . . . x5; g). The same
applies if ξ is replaced by η. One of the two previous situations will
happen if no more than two faulty vertices from the top plate project
down to vertices of P1 or P2. If, on the other hand, all the three faulty
vertices on the top plate project down to vertices in each of the paths
P1, P2 then rx1v cannot be faulty for rx1 is not a vertex in P2. The only
way that no two consecutive vertices of P1 are projections of fault-free
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vertices from the top plate is if the faulty vertices of the top plate
are rv, rx1x2v, rx1x2x3x4v. Assuming, without loss of generality, that
r1 = rxy and taking P1 to be the first path in Table 2 in Appendix
B, we have the following three cases: If P1 = (r, zxyxz; g) then the
desired r − g path in Q4 − F is (r, zxyvzxv; g); if P1 = (r, yzxyx; g)
then the desired r− g path in Q4−F is (r, yvxzvyx; g); finally if P1 =
(r, yzyxy; g) then the desired r−g path in Q4−F is (r, xvyxvzyxy; g).

Subcase (iii). r is on Qtop
4 and g is on Qbot

4 .

If rv 6= g then there exists a Hamiltonian path (rv, ξ; g) for Qbot
4 −{r1}

which clearly has length 6. Then (r, vξ; g) is the desired path with
length 7.

Now let rv = g. ThenN (r)top 6⊂ F . If there exists g1 = rx ∈ N (r)top\F
such that g1v 6= r1 then there exists a path (g1v, η; g) of length five in
Qbot

4 − r1. The path (r, xvη; g) is the desired path of length seven in
Q4−F . If for every g1 = rx ∈ N (r)top \F we have g1v = r1 then such
g1 must be unique; hence N (r)top ⊂ F ∪ {r1v}. Therefore at least two
of the deleted vertices in the top plate are green. Thus g1 has a red
neighbor r2 = g1y ∈ Qtop

4 − F which is different from r. Since there
exists a Hamiltonian path (r2v, ξ; g) for Qbot

4 − {r1} with length 6, the
desired path with length at least 7 is (r, xyvξ; g).

Subcase (iv). g is on Qtop
4 and r is on Qbot

4 .

If N (g)top 6⊂ F , we select a vertex r2 ∈ Qtop
n such that N (r2)

top 6⊂ F .
Let (g, ξ; r2) be a path of length at least one in Qtop

4 −F , and (r2v, η; r)
be a path of length five in Qbot

4 − {r1}. The desired path of length at
least seven in Q4 −F is (g, ξvη; r).

If N (g)top ⊂ F , then (1) gv 6= r and gv 6= r1; (2) all the deleted vertices
on the top plate are red; (3) each pair of green vertices on the top plate,
not containing g, can be connected by a path of length two in Qtop

4 −F ;
and (4) there is a red vertex r2 6= r, r1, gv in Qbot

4 and a path (gv, η; r2)
of length two in Qbot

4 − {r, r1}. Let (r2v, θ; rv) be a path of length two
in Qtop

4 −F . The desired path of length seven in Q4−F is (g, vηvθv; r).

Case (3). For every splitting of Q4 there are exactly two deleted ver-
tices on each plate.

Since there is a splitting that puts r and g on the same plate, we can
assume, without loss of generality, that r and g are on the top plate.
Up to isomorphism, there are five different types of faults that satisfy
the property of this case. It is possible to inspect each case to see that
the desired path of length at least seven always exists. For the benefit
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of the reader we have arranged all possible cases in a table in Appendix
C. This completes the case n = 4.

Let n ≥ 5. If F ⊂ N (s) ∪ {s} for some vertex s, the statement follows
from Lemma 3.2. So we assume that F 6⊂ N (s) ∪ {s} for any s ∈ Qn,
and proceed by induction.

It follows from the above assumption, Corollary 3.7, and Proposition
3.8 that there are two possibilities: (1) there is a splitting of Qn into
two plates such that 2 ≤ f0 = |F bot| ≤ |F top| = f1 ≤ n − 2; and (2)
there exist a splitting of Qn and two vertices s ∈ F top and t ∈ F bot

such that dH(s, t) = 2, F top consists of s and n− 2 neighbors of s, and
F bot = {t}.
For every one of these two cases we shall consider three subcases: (i) r
and g are on the top plate; (ii) r and g are on the bottom plate; (iii) r
and g are on different plates.

Case (1). There is a splitting of Qn into two plates such that 2 ≤ f0 =
|F bot| ≤ |F top| = f1 ≤ n− 2.

Subcase (i). First we consider the extreme case where r is adjacent to
g and either (a) |N (r)∩F top| = n−2 or (b) |N (g)∩F top| = n−2. The
cases (a) and (b) are symmetric, so we shall discuss here only case (a).
Let r1 be a red vertex in the top plate such that r1v 6∈ F . By Theorem
3.9 there is a path (g, η; r1) of length at least 2n−1 − 2(n − 2) − 1
in Qtop

n − F . By Corollary 3.10 there is a path (r1v, θ; rv) of length
2n−1−2·2−2 in Qbot

n −F . The desired path of length at least 2n−2n−1
in Qn −F is (g, ηvθv; r).

If the extreme case above does not happen then N (r)top 6⊂ F top ∪ {g}
and N (g)top 6⊂ F top ∪ {r}. Therefore, by Theorem 3.1 or by Theorem
3.9, there exists a path (r, ξ; g) of length at least 2n−1 − 2f1 − 1 in
Qtop

n −F . Since 2n−1− 2f1− 1 > 2f0 + 1, there exist two words η and θ
such that ξ = ηθ and neither rηv nor rηϕ(θ)v is in F . By Theorem 3.1,
there exists a path (rηv, µ; rηϕ(θ)v) of length at least 2n−1 − 2f0 − 1
in Qbot

n −F . The desired path of length at least 2n− 2n− 1 in Qn−F
is (r, ηvµvθ∗).

Subcase (ii). The proof is similar to the proof of Subcase (i).

Subcase (iii). Without loss of generality we can assume that r is on
the top plate and g is on the bottom plate. Let g1 be a green vertex on
the top plate such that g1v 6∈ F . By Theorem 3.1 there exists a path
(r, ξ; g1) of length at least 2n−1−2f1−1 inQtop

n −F and a path (g1v, η; g)
of length at least 2n−1− 2f0− 1 in Qbot

n −F . The path (r, ξvη; g) is the
desired path of length at least 2n − 2n− 1 in Qn −F .
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Case (2). There exist a splitting of Qn and two vertices s ∈ F top and
t ∈ F bot such that dH(s, t) = 2, F top consists of s and n− 2 neighbors
of s, and F bot = {t}.
Subcase (i). By the induction hypothesis, there exists a path (r, ξ; g)
of length at least 2n−1 − 2(n − 1) − 1 in Qtop

n − F . Since the path is
long enough, there exist words µ and ν such that ξ = µν, rµv 6= t, and
rµϕ(ν)v 6= t. By Theorem 3.1, there exists a path (rµv, η; rµϕ(ν)v) of
length at least 2n−1 − 2 − 1 in Qbot

n − {t}. The desired path of length
at least 2n − 2n− 1 in Qn −F is (r, µvηvν∗; g).

Subcase (ii). The proof is similar to the proof of Subcase (i).

Subcase (iii). Without loss of generality we can assume that r is on
the top plate and g is on the bottom plate. Let g1 be a green vertex on
the top plate such that g1v 6∈ F . We can also assume that g1 is such
that N (r)top 6⊂ F top ∪ {g1} and N (g1)

top 6⊂ F top ∪ {r}. Therefore we
can apply the induction hypothesis and find a path (r, ξ; g1) of length
at least 2n−1 − 2(n − 1) − 1 in Qtop

n − F . By Theorem 3.1, there is a
path (g1v, η; g) of length at least 2n−1−2−1 in Qbot

n −{t}. The desired
path of length at least 2n − 2n− 1 in Qn −F is (r, ξvη; g). �

Now we can improve Corollary 3.10 to allow up to n− 1 faults.

Corollary 3.12. Let n ≥ 2 and f be integers with 0 ≤ f ≤ n− 1 and
F be a set of vertices in Qn of cardinality f. Then for any pair of green
vertices g1, g2 in Qn−F there exists a path of length at least 2n−2f−2
in Qn −F that goes from g1 to g2.

Proof. If 0 ≤ f ≤ n− 2 then the claim is contained in Corollary 3.10.

Let f = n − 1. If n = 2 the claim is obvious. If n ≥ 3 then there
exists r ∈ N (g2) such that N (g1) 6⊂ F ∪ {r} and N (r) 6⊂ F ∪ {g1}.
Then it follows from Theorem 3.11 that there exists a path (g1, η; r) of
length at least 2n−1− 2n− 1 in Qn−{F ∪ {g2}}. If x ∈ S is such that
rx = g2, then (g1, ηx; g2) is the desired path in Qn −F with length at
least 2n−1 − 2(n− 1)− 2. �

Sometimes it is convenient to prescribe not only the ends of the faultless
path but also a specific edge through which the path is forced to pass.
That is the case covered in the following lemma that is an important
ingredient in the proof of the main theorem.

Theorem 3.13. Let n ≥ 3 and f be integers with 0 ≤ f ≤ n − 2.
Let also F be a set of vertices in Qn of cardinality f. Then for any
neutral pair of vertices r, g in Qn − F and for every edge e = {r1, g1}
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not incident to any of the vertices in F ∪ {r, g}, there exists a path of
length at least 2n − 2f − 1 in Qn −F that goes from r to g and passes
through e.

Proof. In the first part of the proof we justify the claim for all the pairs
f, n with f ≤ 2 and n ≥ f + 2. We let z be the element in S such that
g1 = r1z.

The claim is obvious for f = 0 and n = 2. For f = 0 and any n ≥ 3
the claim of the lemma follows readily from the fact that [0, 0, 2, 0] = 2
([CG2, Lemma 3.3]). For f = 1 and n = 3 the claim can be verified by
inspection. For f = 1 and any n ≥ 4, the claim of the lemma follows
from the fact that [2, 0, 2, 0] = 4 ([CG2, Lemma 5.6]). Indeed, let r2, g2

be a red and a green vertices inQn−{r, g, r1, g1} such that F ⊂ {r2, g2}.
Let (r, ξ; g1), (r1, η; g) be a two path covering of Qn−{r2, g2}. The path
(r, ξzη; g) is the desired path of length 2n − 2f − 1 in Qn − F . In a
similar way, if f = 2, n ≥ 4, and the two vertices in F are of opposite
parity, the statement of the lemma follows again from [2, 0, 2, 0] = 4.

To finish the first part of the proof we just need to consider the case
when f = 2, n ≥ 4, and the two vertices in F are of the same parity.
Clearly, in this case we can split Qn into two plates such that

(i) The edge e is contained in Qtop
n ; and

(ii) f0 = f1 = 1, where f0 = |F bot| and f1 = |F top|.

There are three cases to consider: (1) r and g are on the top plate; (2) r
and g are on the bottom plate; (3) r and g are on different plates. The
proof of each of these cases is similar to the proof of the corresponding
cases in the second part of the proof below.

For the second part of the proof we assume that N ≥ 5 is a positive
integer such that the statement is true for all pairs of integers n, f with
4 ≤ n < N and 2 ≤ f ≤ n − 2. We shall prove that the statement is
also true for all pairs N, f with 3 ≤ f ≤ N − 2.

Since f ≥ 3, we can split QN into two plates such that

(i) The edge e is contained in Qtop
N ; and

(ii) 1 ≤ f0, f1 ≤ N − 3, where f0 = |F bot| and f1 = |F top|.

There are three cases to consider: (1) r and g are on the top plate; (2)
r and g are on the bottom plate; (3) r and g are on different plates.

Case (1). By the induction hypothesis, there exists a path (r, ξ; g) of
length at least 2N−1 − 2f1 − 1 in Qtop

N − F that passes through the
edge e. Since 2N−1 − 2f1 − 1 > 2f0 + 3, there exist words η and θ such
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that ξ = ηθ and none of the vertices rη, rηϕ(θ), rηv, or rηϕ(θ)v is in
F ∪ {r1, g1}. By Theorem 3.1, there exists a path (rηv, µ; rηϕ(θ)v) of
length at least 2N−1−2f0−1 in Qbot

N −F . The desired path of length at
least 2N−2f−1 inQn−F that passes through the edge e is (r, ηvµvθ∗).

Case (2). By Theorem 3.1, there exists a path (r, ξ; g) of length at
least 2N−1 − 2f0 − 1 in Qbot

N − F . Since 2N−1 − 2f0 − 1 > 2f1 + 3,
there exist words η and θ such that ξ = ηθ and neither rηv nor rηϕ(θ)
is in F ∪ {r1, g1}. By the induction hypothesis there exists a path
(r1ηv, µ; rηϕ(θ)v) of length at least 2N−1 − 2f1 − 1 in Qtop

N − F that
passes through the edge e. The desired path of length at least 2N−2f−1
in QN −F is (r, ηvµvθ∗; g).

Case (3). Without loss of generality we can assume that r is on the
top plate and g is on the bottom plate. Let g2 be any green vertex
in Qtop

N − (F ∪ {g1, r1}) such that g2v is not in F . By the induction
hypothesis, there is a path (r, ξ; g2) of length at least 2N−1 − 2f1 − 1
in Qtop

N − F that passes through the edge e. By Theorem 3.1, there
exists a path (g2v, µ; g) of length at least 2N−1 − 2f0 − 1 in Qbot

N − F .
The desired path of length at least 2N − 2f − 1 in QN −F that passes
through the edge e is (r, ξvµ; g). �

4. A special case of F

In this section we show that a better estimate for the length of the
maximal path in Qn − F can be obtained if all of the deleted vertices
in F have the same parity and the terminals of the path are of the
opposite parity.

The following two lemmas discuss the case of Q4 and serve as a prepa-
ration to the proof of Theorem 4.3 below and the case n = 5 of the
main theorem that is covered in the next section. We do not consider
here the cases |F| = 1 and |F| = 2 when n = 4 since they are covered
by [1, 1, 0, 1] = 2 (see [LW] or [CG2, Lemma 3.5]) and by [3, 1, 0, 1] = 4
([CG2, Lemma 3.17]), respectively.

Lemma 4.1. Let F = {r1, r2, r3} ⊂ V(Q4), and g1 and g2 be two green
vertices in Q4−F . Then there exists a path (g1, η; g2) in Q4−F which
has the maximal possible length ten.

Proof. Without loss of generality we can assume that F top = {r1, r2}
and F bot = {r3}. We have to consider three cases: (1) the green ter-
minals are on the top plate; (2) the green terminals are on the bottom
plate; and (3) the green terminals are in separate plates.



18 NELSON CASTAÑEDA AND IVAN S. GOTCHEV

Case (1). It is easy to see that there are letters x, y ∈ S such that
g1xv, g2yv ∈ Qbot

4 − F . Let (g1xv, ξ; g2yv) be a Hamiltonian path of
Qbot

4 − {r3}. Then (g1, xvξvy; g2) is the desired path of length ten in
Q4 −F .
Case (2). Let (g1, ξ; g2) be a Hamiltonian path of Qtop

4 − {r3}. There
are words µ, ν such that ξ = µν and g1µv, g1µ

′v are in the two dimen-
sional plane parallel to the plane that contains {r2, r3} in the top plate.
Obviously, there is a path (g1µ

′v, η; g1µv) of length three in Qtop
4 − F .

Then (g1, µ
′vηvν; g2) is the desired path of length ten in Q4 −F .

Case (3). Without loss of generality we can assume that g1 is on the
top plate and g2 is on the bottom plate.

If g1 is adjacent to both r1 and r2 then there is a path (g1, ξ; g3) of length
four in Qtop

4 −F , where g3 is in Qtop
4 −F and is such that g3v 6= r3. By

Theorem 3.1 there is a path (g3v, η; g2) of length five in Qbot
4 −F . The

path (g1, ξvη; g2) is the desired path of length ten in Q4 −F .
If g1 is not adjacent to one of the deleted vertices of the top plate, then
there is a path (g1, ξ; r4) of length three in Qtop

4 − F , where r4 is in
Qtop

4 − F and is such that r4v 6= g2. Let (r4v, η; g2) be a Hamiltonian
path in Qbot

4 −{r3}. The path (g1, ξvη; g2) is the desired path of length
ten in Q4 −F . �

Lemma 4.2. Let F = {r1, r2, r3, r4} ⊂ Q4, and g1 and g2 be two
green vertices in Q4 − F such that N (g1) 6⊂ F and N (g2) 6⊂ F . Then
either there exists a path (g1, η; g2) in Q4−F with the maximal possible
length eight or else, there is a partition of Q4 into plates such that
F ⊂ V(Qtop

4 ), {g1, g2} ⊂ V(Qbot
4 ), and the maximal length of a path

(g1, η; g2) is six.

Proof. We consider two cases: (A) there exists a partition such that
F ⊂ V(Qtop

n ); and (B) every partition has deleted vertices in each plate.

Case A. Assume that F ⊂ V(Qtop
n ) for some partition. If g1, g2 are on

the bottom plate, then by Corollary 3.12, there is a path (g1, η; g2) of
length 2n−1 − 2 = 6 in the bottom plate. There is no path longer than
that since no path from g1 to g2 can visit the top plate which has all
the red vertices deleted. If both g1 and g2 are on the top plate, then
there is a path (g1v, ξ; g2v) of length six in the bottom plate. The path
(g1, vξv; g2) is the desired path of length eight in Q4 − F . If g1, g2 are
not on the same plate we can assume without loss of generality that
g1 is on the top plate and g2 is on the bottom plate. There is a path
(g1v, ξ; g2) that is Hamiltonian for the bottom plate. Then the path
(g1, vξ; g2) is the desired path of length eight in Qtop

4 −F .
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Case B. Split Q4 into two plates such that g1 ∈ V(Qtop
4 ) and g2 ∈

V(Qbot
4 ). Then we have to consider the following three subcases: (1)

|F top| = 4; (2) |F top| = 3; and (3) |F top| = 2 for all possible splittings
that separate g1 from g2.

Subcase (1). If (g1v, ξ; g2) is a Hamiltonian path in Qbot
4 then (g1, vξ; g2)

is the desired path of length eight in Q4 −F .
Subcase (2). We assume that r4 is the deleted vertex in the bottom
plate. Up to isomorphism the possible configurations for F top are (a)
F top = {g1x, g1y, g1z}; and (b) F top = {g1x, g1y, g1xyz}, where x, y, z ∈
S.

(a) In this case, up to isomorphism, F bot = {g1vxy} is the only pos-
sibility for F bot. Again, up to isomorphism, there are three possi-
bilities: g2 = g1vxyz, g2 = g1vx, or g2 = g1vz. In the first case
the path (g1, vxzvyxvx; g2) does the job; in the second case the path
(g1, vyzvxyvz; g2) does the job; and in the last case (g1, vxzyvxvy; g2)
does the job.

(b) Observe that there is a path (g1, ξ; g3) of length two in Qtop
4 − F

such that g3v 6= r4. There is also a path (g3v, η; g2) of length five in
Qbot

4 − {r4} (Theorem 3.1). The path (g1, ξvη; g2) is the desired path
of length eight in Q4 −F .
Subcase (3). For this subcase there is a red vertex r and letters x, y ∈ S
such that F = {r, rxy, rvz, rxyvz}. Then, up to isomorphism, there are
two possible values for g1 : g1 = rx; or g1 = rz. The following table
shows fault-free paths of length eight from either of the two values of
g1 to every green vertex g2 in the bottom plate.

g2 path from g1 = rx path from g1 = rz
rv vzvyxzvy xyxvzxyx
rxyv vzvyxzvx xyxvzyxy
rxzv zyxvzxyz xyxvzxyz
ryzv vzvyxzvz yxyvzyxz

�

For the proof of the following general result we use the previous two
lemmas.

Theorem 4.3. Let n ≥ 5 and f be integers with 1 ≤ f ≤ n. Let also
F be a set of red vertices in Qn with cardinality f. Then for any pair of
green vertices g1, g2 in Qn − F such that N (g1) 6⊂ F and N (g2) 6⊂ F ,
there exists a path (g1, η; g2) with the maximal possible length 2n − 2f
in Qn −F .
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Proof. First, let us observe that if f = 1 the statement of the theorem
follows immediately from [1, 1, 0, 1] = 2 ([LW], [CG2, Lemma 3.5]), and
that if f = 2, the statement of the theorem follows from [3, 1, 0, 1] = 4
([CG2, Lemma 3.17]).

Now, let 3 ≤ f ≤ n and n ≥ 5. The proof is by induction on n.
Without loss of generality, we can assume that for any given partition
of Qn into two plates Qtop

n and Qbot
n we have f0 = |F bot| ≤ |F top| = f1.

The following two cases exhaust all possible situations: (1) for some
partition we have 1 ≤ f0 ≤ f1 ≤ n − 2; and (2) for every partition
f1 ≥ n− 1.

Case (1). Split Qn into two plates such that 1 ≤ f0 ≤ f1 ≤ n − 2.
Then we have to consider three subcases: (a) g1 and g2 are on the top
plate; (b) g1 and g2 are on the bottom plate; and (c) g1 is on the top
plate and g2 is on the bottom plate.

Subcase (a). By the induction hypothesis (if n > 5), by Lemma 4.1 (if
n = 5 and f1 = 3), or by [3, 1, 0, 1] = 4 (if n = 5 and f1 = 2) there
exists a path (g1, ξ; g2) of length 2n−1− 2f1 in Qtop

n −F . Since the path
is long enough (2n−1 − 2f1 > 2f0 if n ≥ 5), there are words µ, ν such
that ξ = µν, and neither g1µ

′v nor g1µv is in F . By Theorem 3.1, there
is a path (g1µ

′v, η; g1µv) of length at least 2n−1 − 2f0 − 1 in Qbot
n −F .

Then (g1, µ
′vηvν; g2) is a path of length at least 2n − 2f in Qn − F .

Since that is the maximal possible length of a path that connects g1 to
g2 in Qn −F , the proof of this subcase is completed.

Subcase (b). By the induction hypothesis (if n > 5), by [3, 1, 0, 1] = 4
(if n = 5 and f0 = 2), or by [1, 1, 0, 1] = 2 (if n = 5 and f0 = 1) there
exists a path (g1, ξ; g2) of length 2n−1− 2f0 in Qbot

n −F . Since the path
is long enough (2n−1−2f0 > 2f1 +2 if n ≥ 5), there are words µ, ν such
that ξ = µν, neither g1µ

′v nor g1µv is in F , N (g1µ
′v)top 6⊂ F ∪{g1µv},

and N (g1µv)top 6⊂ F ∪ {g1µ
′v}. By Theorem 3.1 (if f1 ≤ n− 3), or by

Theorem 3.9 (if f1 = n − 2), there is a path (g1µ
′v, η; g1µv) of length

at least 2n−1 − 2f1 − 1 in Qtop
n − F . Then (g1, µ

′vηvν; g2) is a path of
length 2n− 2f in Qn−F . Since that is the maximal possible length of
a path that connects g1 to g2 in Qn − F , the proof of this subcase is
completed.

Subcase (c). Since n ≥ 5, there exists a red vertex r in Qtop
n such

that r is not in F , N (g1)
top 6⊂ F ∪ {r}, and rv 6= g2. By Theorem 3.1

(if f1 ≤ n − 3), or by Theorem 3.9 (if f1 = n − 2), there is a path
(g1, ξ; r) of length at least 2n−1− 2f1− 1 in Qtop

n −F . By the induction
hypothesis (if n > 5), by [3, 1, 0, 1] = 4 (if n = 5 and f0 = 2), or by
[1, 1, 0, 1] = 2 (if n = 5 and f0 = 1) there is a path (rv, η; g2) of length
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2n−1 − 2f0 in Qbot
n − F . Then (g1, ξvη; g2) is a path of length at least

2n− 2f in Qn−F . Since that is the maximal possible length of a path
that connects g1 to g2 in Qn−F , the proof of this subcase is completed.

Case (2). This case can occur only if f = n. Since all deleted vertices
are red, it follows from Proposition 3.8 that F = N (g) for some green
vertex g in the top plate. By hypothesis g has to be different from
g1 and g2. Without loss of generality, we can assume that g1 is on the
top plate and g2 is on the bottom plate. Since n ≥ 5, there is a red
vertex r in Qtop

n − F such that rv 6= g2. By Theorem 3.11, there is a
path (g1, ξ; r) of length at least 2n−1 − 2f1 − 1 in Qtop

n −F . Also, since
[1, 1, 0, 1] = 2, there is a path (rv, η; g2) of length 2n−1− 2 in Qbot

n −F .
Then (g1, ξvη; g2) is a path of length at least 2n− 2f in Qn−F . Since
that is the maximal possible length of a path that connects g1 to g2 in
Qn −F , the proof of this case is completed. �

5. The case n = 5

In this section we prove the case n = 5 of the main theorem. Notice that
our theorem improves by 2 (in the case n = 5) the estimate provided
by Fu’s theorem and as the example given in the introduction shows,
8 is the exact upper bound for f in this case.

Theorem 5.1. Let n = 5 and f be an integer such that 0 ≤ f ≤
3n− 7 = 8. Then for any set of vertices F in Qn of cardinality f there
exists a cycle in Qn −F of length at least 2n − 2f.

Proof. Since Fu’s Theorem covers the cases 0 ≤ f ≤ 6, we just need
to prove our claim when f = 7 and f = 8. Without loss of generality,
we assume that for any splitting of the hypercube we have 0 ≤ f0 =
|F bot| ≤ |F top| = f1 ≤ 8. Let (k, 8− k) mean that f0 = k, f1 = 8− k.
Part One. For this part f = 8.

The strategy of the proof is as follows: We consider all possible cases
in the following order: (0, 8), (1, 7), (4, 4), (3, 5) leaving for the end the
case when each splitting is of type (2, 6).

The case (0, 8) is solved by any Hamiltonian cycle in the bottom plate.

For the case (1, 7) let us assume, without loss of generality, that the
faulty vertex on the bottom plate is a red vertex r. Then there exists
a red vertex r1 in Qtop

5 − F and a letter x ∈ S different from v such
that neither r1v nor r1xv is in F . Let (r1v, ξ; r1xv) be a path of length
2n−1 − 2 − 1 = 13 in Qbot

5 − F (Theorem 3.1). Then (r1, vξvx) is the
desired cycle of length 2n − 2f = 16 in Q5 −F .
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For the case (4, 4) we consider three subcases: (1) each plate has faulty
vertices of both colors; (2) all faulty vertices of Qtop

5 are of the same
color and are not contained in any three dimensional subcube of Qtop

5 ;
(3) all faulty vertices of Qtop

5 are of the same color and are contained
in a three dimensional subcube of Qtop

5 .

Subcase (1). Since each plate contains at most three deleted vertices
of a given color, there are two non-deleted vertices r, g in the bottom
plate such that (a) rv and gv are not in F ; (b) N bot(r) 6⊂ F bot ∪ {g};
(c) N bot(g) 6⊂ F bot ∪ {r}; (d) N top(rv) 6⊂ F top ∪ {gv}; (e) N top(gv) 6⊂
F top ∪ {rv}. Then, by Theorem 3.11, there exists a path (r, ξ; g) of
length at least 2n−1 − 2f0 − 1 = 7 in Qbot

5 −F and a path (gv, η; rv) of
length at least 2n−1 − 2f1 − 1 = 7 in Qtop

5 − F . The cycle (r, ξvηv) is
the desired cycle of length at least 2n − 2f = 16 in Q5 −F .
Subcase (2). We can assume that all faulty vertices in the top plate are
red. Let (r, ξ) be a cycle of length at least 2n−1 − 2f0 = 8 in Qbot

5 −F
(Theorem 1.1). Since this cycle has four distinct red vertices, we can
assume that r, ξ have been selected in such a way that N (rv) 6⊂ F top

and N (rξ′′v) 6⊂ F top. Then, by Lemma 4.2, there is a path (rv, η; rξ′′v)
of length at least eight inQtop

5 −F . The cycle (r, vηv(ξ′′)R) is the desired
cycle of length at least 2n − 2f = 16 in Q5 −F .
Subcase (3). We split Qtop

5 into two plates Qtop,top
5 and Qtop,bot

5 such that
all deleted vertices in Qtop

5 are red and are contained in Qtop,top
5 . Let u

be the letter such that Qtop,bot
5 = uQtop,top

5 . We also denote vQtop,top
5 by

Qbot,top
5 and vQtop,bot

5 by Qbot,bot
5 .

If all deleted vertices of the bottom plate are in Qbot,bot
5 then we can

proceed as follows. Let r1, r2 be any two red vertices in Qtop,bot
5 . Then,

by Corollary 3.10, there exists a path (r1, ξ; r2) of length 2n−2 − 2 = 6

in Qtop,bot
5 and a path (r2uv, η; r1uv) of length 2n−2 − 2 = 6 in Qbot,top

5 .
Then (r1, ξuvηvu) is the desired cycle of length 2n−2f = 16 in Q5−F .
If there are less than four deleted vertices in Qbot,bot

5 then there exist a

red vertex r and a green vertex g in Qbot,bot
5 − F such that N (r)bot 6⊂

F bot ∪ {g} and N (g)bot 6⊂ F bot ∪ {r}. Then, by Theorem 3.11, there
exists a path (g, η; r) of length at least 2n−1− 2f0− 1 = 7 in Qbot

5 −F .
Finally, let (rv, ξ; gv) be a path of length 7 in Qtop,bot

5 . Then (r, vξvη)
is the desired cycle of length at least 2n − 2f = 16 in Q5 −F .
In the case (3, 5), according to Theorem 1.1, there exists a cycle (a, η)
of length at least eight in Qtop

5 − (F \ {b}), where b ∈ F top and a is
chosen to be b if the cycle passes through b, or else, any vertex in the
cycle.
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There are two subcases: (1) all faulty vertices of the bottom plate are
of the same color; (2) there are faulty vertices of both colors in the
bottom plate.

Subcase (1). We can assume that all faulty vertices in the bottom plate
are red.

If a is green, produce a path (aη′v, ξ; a(ηR)′v) of length ten in Qbot
5 −F .

Such path exists according to Lemma 4.1. Then (a(ηR)′, η′∗vξv) is a
cycle of length at least 10 + 2 + 6 = 18 in Q5 −F .
If a is red, produce a path (aη′′v, ξ; a(ηR)′′v) of length ten in Qbot

5 −F .
Such path exists according to Lemma 4.1. Then (a(ηR)′′, η′′∗∗vξv) is a
cycle of length at least 10 + 2 + 4 = 16 in Q5 −F .
Subcase (2). Without loss of generality we can assume that there are
two red vertices and one green vertex in F bot.

If a is a green vertex, then at least one of the pairs (aη′v, a(ηR)′′′v)
or (aη′′′v, a(ηR)′v) of green vertices does not contain a deleted vertex.
Since both cases are symmetrical we shall consider only the case when
(aη′v, a(ηR)′′′v) does not contain the deleted green vertex. Produce
a Hamiltonian path (aη′v, ξ; a(ηR)′′′v) of length twelve in Qbot

5 − F .
Such path exists since [3, 1, 0, 1] = 4 ([CG2, Lemma 3.17]). Then
(a(ηR)′′′, η′∗∗∗vξv) is a cycle of length at least 12+2+4 = 18 in Q5−F .
If a is a red vertex then there are at least three more red vertices r1,
r2, and r3 in (a, η). At most one of the three green vertices r1v, r2v,
or r3v is a deleted vertex. Without loss of generality, we can assume
that r1v and r2v are non-deleted vertices. Let (r1, ζ; r2) be the path
along (a, η) that does not contain a. Clearly, the length of this path is
at least two. Produce a Hamiltonian path (r2v, ξ; r1v) of length twelve
in Qbot

5 −F . Such path exists since [3, 1, 0, 1] = 4 ([CG2, Lemma 3.17]).
Then (r1, ζvξv) is a cycle of length at least 12 + 2 + 2 = 16 in Q5−F .
Finally, we consider the case when each splitting is of type (2, 6). We

split Qbot
5 into two subcubes Qbot,top

5 and Qbot,bot
5 such that each one of

them contains exactly one deleted vertex. This splitting partitions the
top plate into Qtop,top

5 and Qtop,bot
5 . One of these subcubes must contain

exactly 5 deleted vertices and the other, say Qtop,bot
5 , must contain only

one deleted vertex. Let r be the deleted vertex in Qtop,bot
5 and let g1, g2

be vertices of the opposite parity in Qtop,bot
5 such that neither g1v nor

g2v is deleted (as always, v is the letter such that Qtop
5 = vQbot

5 ). Let

(g1, ξ; g2) be a Hamiltonian path in Qtop,bot
5 −{r}, and (g2v, η; g1v) be a

path of length at least 24−4−2 in Qbot
5 −F bot guaranteed by Corollary
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3.10. Then the desired cycle in Q5 − F is (g1, ξvηv). Observe that in
this case the cycle is actually of length 6 + 2 + 24 − 4− 2 = 18.

This finishes the proof for f = 8.

Part Two. For this part f = 7.

The strategy is to cover the cases (0, 7), (1, 6), and (3, 4) first so that
the remaining case is when all the splittings are of type (2, 5).

The case (0, 7) is solved by any Hamiltonian cycle in the bottom plate.

For the case (1, 6) let us assume, without loss of generality, that the
faulty vertex on the bottom plate is a red vertex r. Then there exist two
red vertices r1, r2 in Qtop

5 −F and letters x, y ∈ S\{v} such that none of
r1x, r1xv, r2y, r2yv is in F . Let g be any green vertex inQbot

5 −{r1v, r2v}.
Since [2, 0, 2, 0] = 4 ([CG2, Lemma 5.6]), there exists a 2-path covering
(r1v, ξ; r2yv), (r2v, η; r1xv) of Qbot

5 − {r, g}. Then (r1, vξvyvηvx) is the
desired cycle of length 12 + 2 + 1 + 2 + 1 = 18 in Q5 −F .
The case (3, 4) can be handled in the following way. As explained in
the next paragraph, one can find in Qbot

5 a green vertex g and a red
vertex r such that (1) N (r)bot 6⊂ F ∪ {g}; (2) N (g)bot 6⊂ F ∪ {r}; (3)
N (rv)top 6⊂ F ∪{gv}; and (4) N (gv)top 6⊂ F ∪{rv}. Then, by Theorem
3.9 and Theorem 3.11, there exists a path (r, ξ; g) of length at least nine
in Qbot

5 −F , and a path (gv, η; rv) of length at least seven in Qtop
5 −F .

The desired cycle of length 2n − 2f = 18 in Q5 −F is (r, ξvηv).

Here we explain how to choose the vertices r and g with the properties

(1) – (4) mentioned above. Let F̃ = vF top ∪ F bot. Clearly |F̃ | ≤
7. Without loss of generality we may assume that r(F̃) < g(F̃). In
particular, not all the vertices in F top are green. Hence for any green

vertex g ∈ Qbot
5 − F̃ we have N (gv)∩Qtop

5 6= F top. In the extreme case

when all the vertices in F̃ are of the same color, which by assumption
must be green, we choose g to be the only green vertex on the bottom

plate that is not in F̃ . Among the four red vertices of Qbot
5 that are at

distance three from g, it is easy to find a vertex r to satisfy conditions

(1) – (4). If not all vertices in F̃ are green, let g1, g2 be two distinct

green vertices in Qbot
5 − F̃ . Let us declare a red vertex in Qbot

5 to be

bad if it is in F̃ or if all of its neighbors in the bottom plate are in

F̃ . There are at most 5 bad red vertices in Qbot
5 : at most 3 deleted

and at most two whose all neighbors in Qbot
5 are in F̃ . On the other

hand |(S3(g1) ∪ S3(g2)) ∩ Qbot
5 | ≥ 6. Therefore there is a red vertex in

(S3(g1)∪ S3(g2))∩Qbot
5 that is not bad and that one is our choice of r.
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Without loss of generality we may assume that r ∈ S3(g1). Then g1 is
our choice of g.

Finally when all the splittings are of type (2, 5) we can proceed exactly
as we did in Part one when all the splittings were of type (2, 6) and
as it was pointed out there we can produce a cycle of length 18 in
Q5 −F . �

6. Proof of the main theorem for n > 5

Now we are ready to prove our main theorem for every n > 5.

Theorem 6.1. Let n ≥ 5 and f be integers with 0 ≤ f ≤ 3n−7. Then
for any set F of vertices in Qn of cardinality f there exists a cycle in
Qn −Fof length at least 2n − 2f.

Proof. The proof is by induction. Thanks to Fu’s theorem (Theorem
1.1) we can assume that f > 2n− 4, thus f > n + 1. Therefore, there
exists a splitting ofQn such that 2 ≤ f0 = |F bot| ≤ f1 = |F top| ≤ 3n−9.

The case n = 5 was considered in the previous section.

Now let n ≥ 6. We have to consider two cases: (1) f0 = 2, f1 = 3n−9;
and (2) 2 ≤ f0 ≤ f1 ≤ 3n− 10.

Case (1). There are two possibilities: (i) all vertices in F top are of the
same color, and all vertices of F bot are of the opposite color; or (ii)
there exists a vertex in F top with the same color as a vertex in F bot.

Subcase (i). Without loss of generality, we can assume that the vertices
in F top are green and the vertices in F bot are red. Let g1 be any vertex in
F top. By the induction hypothesis, there exists a cycle (g, ξ) of length
at least 2n−1 − 2(f1 − 1) in Qtop

n − (F top \ {g1}), where g is chosen
to be g1, if g1 is in the cycle, or g is any green vertex in the cycle,
otherwise. Since [3, 1, 0, 1] = 4 ([CG2, Lemma 3.17]), there is a path
(gξ′v, η; g(ξR)′v) of length 2n−1 − 4 in Qbot

n − F . Then (gϕ(ξ), ξ′∗vηv)
is a cycle of length 2n − 2f + 2 in Qn −F .
Subcase (ii). Without loss of generality, we can assume that there is a
green vertex g1 in F top and a green vertex g2 in F bot. By the induction
hypothesis, there exists a cycle (g, ξ) of length at least 2n−1− 2(f1− 1)
in Qtop

n − (F top \ {g1}), where g is chosen to be g1, if g1 is in the cycle,
or g is any green vertex in the cycle, otherwise. We can also assume,
without loss of generality, that gξ′v 6= g2.

If the second vertex in F bot is also green, then gξ′′v and g(ξR)′′v are
two red vertices in Qbot

n − F . Therefore, since [3, 1, 0, 1] = 4 ([CG2,
Lemma 3.17]), there exists a path (gξ′′v, η; g(ξR)′′v) of length 2n−1 − 4
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in Qbot−F . Then (g(ξR)′′, (ξ∗∗)′′vηv) is a cycle of length at least 2n−2f
in Qn −F .
If the second vertex in F bot is red, then either g(ξR)′v or g(ξR)′′′v is
not in F bot. In the first case, since [3, 1, 0, 1] = 4, there exists a path
(gξ′v, η; g(ξR)′v) of length 2n−1− 4 in Qbot

n −F . Then (g(ξR)′, (ξ∗)′vηv)
is a cycle of length at least 2n − 2f + 2 in Qn −F . In the second case,
again according to [3, 1, 0, 1] = 4, there exists a path (gξ′v, η; g(ξR)′′′v)
of length 2n−1 − 4 in Qbot

n − F . Then (g(ξR)′′′, (ξ∗∗∗)′vηv) is a cycle of
length at least 2n − 2f in Qn −F .
Case (2). Observe that 3n − 10 = 3(n − 1) − 7. Therefore, by the
induction hypothesis, there exists a cycle (r, ξ) of length at least 2n−1−
2f1 in Qtop

n −F , where r is some vertex in Qtop
n −F . The cycle (r, ξ) has

length 2n−1−2f1 ≥ 4f0 with equality if and only if n = 6, f0 = 5, f1 = 6.

If at least one out of every four consecutive vertices along (r, ξ) is
adjacent to a faulty vertex in Qbot

4 , then n = 6, f0 = 5, f1 = 6 and all
the vertices of Qtop

6 that are adjacent to the five faulty vertices of Qbot
6

divide the cycle (r, ξ) into five paths each of length 4. Let a, b be two
vertices in the cycle (r, ξ) at distance two from each other and such
that av, bv /∈ F , N (av) 6= F bot and N (bv) 6= F bot. Observe that the
parity of all the faulty vertices in the bottom plate is opposite to the
parity of av and bv. Let η, x, y be a word and two letters such that
(r, ξ) = (a, ηxy), with aη = b. By Theorem 4.3 there exists a path
(bv, ν; av) in Qbot

6 − F bot of length 2n−1 − 2f0. The desired cycle in
Q6 −F is (a, ηvνv).

We can assume now that along the cycle (r, ξ) there are four consecutive
vertices adjacent to non-faulty vertices in Qbot

6 . Thus there are words
η, θ, and a letter w ∈ S such that ξ = ηwθ, and none of rη′v, rηv,
rηwv, or rηwϕ(θ)v is in F . Split Qbot

n further into two plates Q′,Q′′
such that Q′ = wQ′′. Without loss of generality, we can assume that
f ′0 = |F ∩V(Q′)| ≤ f ′′0 = |F ∩V(Q′′)|, and that rη′v and rηv are in Q′.
We shall consider separately the case when f ′0 = 0 and the case when
f ′0 ≥ 1.

First, assume that f ′0 = 0 and let a ∈ F bot. It is clear that if n ≥ 7
then f ′′0 − 1 ≤ 3n−7

2
− 1 ≤ 3n − 13 = 3(n − 2) − 7 and if n = 6 then

f ′′0 − 1 ≤ 5 − 1 = 4 = 2(n − 2) − 4. Therefore, by Fu’s theorem (if
n = 6), or by the induction hypothesis (if n ≥ 7), there exists a cycle
(b, ζ) of length at least 2n−2 − 2(f ′′0 − 1) in Q′′ − (F \ {a}), where b is
some vertex in Q′′ −F . There are two subcases to consider: (i) a is in
the cycle (b, ζ); and (ii) a is not in the cycle (b, ζ).
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Subcase (i). a is in the cycle (b, ζ). Then there exist words µ and ν
such that ζ = µν and a = bµ. There are four possibilities.

(a) {bµ′′w, aϕ(ν)w} ∩ {rη′v, rηv} = ∅.
Let (rη′v, α; aϕ(ν)w), (bµ′′w, β; rηv) be a 2−path covering of Q′. Such
path covering exists since [0, 0, 2, 0] = 2 ([CG2, Lemma 3.3]) and
[0, 0, 0, 2] = 4 ([CG2, Lemma 3.13]). The desired cycle of length at
least 2n − 2f in Qn −F is (r, η′vαwν∗µ′′wβvwθ).

(b) {bµ′′w, aϕ(ν)w} = {rη′v, rηv}.
Then {bµ′w, aϕ(ν∗)w}∩{rη′v, rηv} = ∅ and therefore the desired cycle
could be constructed as in (a).

(c) bµ′′w = rηv and aϕ(ν)w 6= rη′v.

Let (rη′v, α; aϕ(ν)w), be a Hamiltonian path for Q′ − {rηv}. Such
Hamiltonian path exists since [1, 1, 0, 1] = 2. The desired cycle of
length at least 2n − 2f in Qn −F is (r, η′vαwν∗µ′′wvwθ).

(d) bµ′′w 6= rηv and aϕ(ν)w = rη′v.

This case is similar to case (c).

Subcase (ii). a is not in the cycle (b, ζ). By replacing b, if necessary,
with some other vertex in the cycle, we can assume that {bw, bζ ′w} ∩
{rη′v, rηv} = ∅. Let (rη′v, α; bw), (bζ ′w, β; rηv) be a 2−path covering
of Q′. Such path covering exists since [0, 0, 2, 0] = 2 (see [D] or [CG2,
Lemma 3.3]) and [0, 0, 0, 2] = 4 ([CG2, Lemma 3.13]). The desired
cycle of length at least 2n − 2f in Qn −F is (r, η′vαwζ ′wβvwθ). (The
cycle is actually of length at least 2n − 2f + 2.)

Now, let us assume that f ′0 ≥ 1. In this case if n ≥ 7 then f ′′0 ≤ 3n−7
2
−

1 ≤ 3n−13 = 3(n−2)−7 and if n = 6 then f ′′0 ≤ 5−1 = 4 = 2(n−2)−4.
Therefore, by Fu’s theorem (if n = 6), or by the induction hypothesis
(if n ≥ 7), there exists a cycle (c, µ) of length at least 2n−2 − 2f ′′0
in Q′′n − F . Since this cycle is long enough (or, more precisely, since
2n−2−2f ′′0 > 2(f ′0+2) when n ≥ 6) there exist c and µ such that neither
cw nor cµ′w is in F ∪ {rη′v, rηv}. Also, it follows from f ′0 ≤ f ′′0 and
n ≥ 6 that f ′0 ≤ b3n−7

4
c ≤ (n−2)−2. Therefore, Theorem 3.13 applies,

and there is a path (rη′v, ζ; rηv) of length at least 2n−2−2f ′0−1 inQ′−F
that passes through the edge {cw, cµ′w}. Without loss of generality, we
can assume that ζ = ρuγ for some words ρ, γ and a letter u ∈ S, such
that rη′vρ = cw and rηv = cµ′wγ. The desired cycle of length at least
2n − 2f in Qn −F is (r, η′vρwµ′wγvwθ). �
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Appendix A. Path coverings with prescribed ends

Table 1 summarizes some of the results obtained in [CG2] on path cov-
erings with prescribed ends in faulty hypercubes. The rows represent
admissible combinations of M and C and the columns contain all the
values of N and O such that N +O ≤ 3. Each star in the table repre-
sents an impossible case. The missing entries in the table correspond
to values of [M,C,N,O] that we do not know yet. The inequalities
in the table represent an upper or lower bound of the corresponding
entry.

Table 1

MC\NO 01 10 20 11 02 30 21 12 03
00 ? 1 2 ? 4 5 ? ≤ 6 ?
11 2 ? ? 4 ? ? ≤ 6 ? ≤ 6
20 ? 4 4 ? 5 ? ?
22 ? ? ? ? 4 ? ? ≤ 6 ?
31 4 ? ? 5 ? ? ?
33 ? ? ? ? ? ? ? ? ≤ 6
40 ? 5 ? ? ?
42 ? ? ? ? 5 ? ? ?
44 ? ? ? ? ? ? ? ? ?
51 5 ? ? ≥ 5 ? ? ?

Appendix B. Paths in Q3

Table 2 shows the two different paths that connect a red vertex r to a
green vertex g in Q3− r1, where r1 is a red vertex. We assume without
loss of generality that r = r1xy for two different letters x, y. Let also
z be a third letter different from x and y. The table gives the three
essentially distinct cases of g. Each path is represented by the word
that should be followed in order to go from r to g.

Table 2

g First Path Second Path
ry zxyxz xzyxz
rz yzxyx xzyxy
rxyz yzyxy xzxyx

The reader can observe that for each case the two paths together cover
at least 7 different edges. Observe also that for each value of g the
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second vertex of either path (counted from r) is not contained in the
other path. For example, when g = ry, the second vertex of the first
path is rz and is not contained in the second path. At the same time
the second vertex of the second path is rx and it is not contained in
the first path.

Appendix C. Special cases for Theorem 3.11

Table 3 contains, up to isomorphisms, all the possible configurations
of faults of mass 4 in Q4 with the property that each splitting sepa-
rates the fault with exactly two vertices on each plate. For each type
of fault there is also a complete, up to isomorphisms, list of possible
distributions of the red and green terminals on the top plate. Finally
the table shows paths of length at least 7 in Q4 −F for each case.

Table 3

F r g path
ε, xy, zv, zvxy x xz vxyzvxy

x yz zvzyxzv
z xz yzvxyzv

ε, xy, xzv, zvy x xz vyxyzvyxy
x yz zyvzyxyvz
z xz yzvyxyzvy

ε, x, yzv, xyzv y yx zxyvzxyxv
y yz xvxyxzvyx
y xz zxzvxyxzv
z zy xyzvyzxzyvz
xyz zy zvyzxzyvz

ε, xyz, v, xyzv x xy zvzyxzyvyzx
x xz yxzyvyzxyzv
x yz zvzyxzyvy
z xz yzxyvyxzyxv
z xy yzvzyxvzy

ε, xyz, xv, yzv x xy zxyzvyzxyzv
x xz yxzyvzyxzyv
x yz zxvxyzxvz
z xz yzvyzxyzvyz
z xy yzvyzxyzv
y xy zyxvxzyxv
y xz zyvzyxvyz
y yz vyzxyzvyzxy
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The notation is as follows. ε denotes a fixed vertex that we can think
of as the vertex (0, 0, 0, 0). Any other vertex a is represented by a word
that would label a path from ε to a. Finally, each path is represented
by the word that represents the steps to follow starting from the first
terminal.
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