1. SET THEORY

1. SETS AND SUBSETS. BASIC SET OPERATIONS

Intuitively, a set is any well-defined list, collection, or class of objects. These objects are called the elements or members of the set.

Example: \(A = \{1,2,3,4\} \), \(B = \{x \mid x \text{ is even natural number}\} \).

In the previous example the set \(A \) is written in so called tabular form while the set \(B \) is written in set-builder form. Notice that the vertical line “\(| \)” in \(B \) is read “such that”.

If an object \(x \) is a member of a set \(A \), i.e. \(A \) contains \(x \) as one of its elements, then we write \(x \in A \), which can also be read “\(x \) belongs to \(A \)”. If, on the other hand, an object \(x \) is not a member of a set \(A \), i.e. \(A \) does not contain \(x \) as one of its elements, then we write \(x \notin A \).

Set \(A \) is equal to set \(B \) if they both have the same members. We denote the equality of sets \(A \) and \(B \) by \(A = B \).

The empty set is a set which contains no elements. This set is sometimes called the null set and we denote it by the symbol \(\emptyset \).

If every element in a set \(A \) is also a member of a set \(B \), then \(A \) is called a subset of \(B \). We denote this by \(A \subseteq B \).

The family of all the subsets of any set \(A \) is called the power set of \(A \) and is denoted by \(P(A) \) or by \(2^{A} \).

The union of sets \(A \) and \(B \) is the set of all elements which belong to \(A \) or to \(B \) or to both. We denote the union of \(A \) and \(B \) by \(A \cup B \) which is usually read “\(A \) union \(B \)”. The union of \(A \) and \(B \) may also be defined concisely by \(A \cup B = \{x \mid x \in A \text{ or } x \in B\} \).

Remark: \(A \cup B = B \cup A \).

The intersection of sets \(A \) and \(B \) is the set of elements which are common to \(A \) and \(B \). We denote the intersection of \(A \) and \(B \) by \(A \cap B \) which is read “\(A \) intersection \(B \)”. The intersection of \(A \) and \(B \) may also be defined concisely by \(A \cap B = \{x \mid x \in A \text{ and } x \in B\} \).

Remark: \(A \cap B = B \cap A \).

If sets \(A \) and \(B \) have no elements in common, then we say that \(A \) and \(B \) are disjoint and we denote that by \(A \cap B = \emptyset \).

The difference of sets \(A \) and \(B \) is the set of elements which belong to \(A \) but which do not belong to \(B \). We denote the difference of \(A \) and \(B \) by \(A \setminus B \) which is read “\(A \) difference \(B \)” or, simply, “\(A \) minus \(B \)”.

The difference of \(A \) and \(B \) may also be defined concisely by \(A \setminus B = \{x \mid x \in A \text{ and } x \notin B\} \).

In any applications of the theory of sets, all the sets under investigation will likely be subsets of a fixed set. We call this set the universal set and denote it by \(S \).

The complement of a set \(A \) is the set of elements which do not belong to \(A \), that is, the difference of the universal set \(S \) and \(A \). We denote the complement of \(A \) by \(A' \). The complement of \(A \) may also be defined concisely by \(A' = \{x \mid x \in S \text{ and } x \notin A\} \).

Remark: \(A \cup A' = S \), \(A \cap A' = \emptyset \), \((A')' = A \), \(S' = \emptyset \), \(\emptyset' = S \).

Theorem 1. \(A \subseteq B \) implies \(A \cap B = A \), \(A \cup B = B \), \(B' \subseteq A' \), \(A \cup (B \setminus A) = B \).

Theorem 2. (Algebra of sets)

a) Idempotent Laws: \(A \cup A = A \), \(A \cap A = A \).
b) Associative Laws: \((A \cup B) \cup C = A \cup (B \cup C)\), \((A \cap B) \cap C = A \cap (B \cap C)\).

c) Commutative Laws: \(A \cup B = B \cup A\), \(A \cap B = B \cap A\).

d) Distributive Laws: \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\), \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\).

e) Identity Laws: \(A \cup \emptyset = A\), \(A \cap S = A\), \(A \cup S = S\), \(A \cap \emptyset = \emptyset\).

f) Complement Laws: \(A \cup A' = S\), \(A \cap A' = \emptyset\), \((A')' = A\), \(S' = \emptyset\), \(\emptyset' = S\).

g) De Morgan’s Laws: \((A \cup B)' = A' \cap B'\), \((A \cap B)' = A' \cup B'\).

2. RELATIONS

Let \(A\) and \(B\) be sets. Any subset \(R^* \subseteq A \times B\) defines a relation \(R\) from \(A\) to \(B\). If \((x, y) \in R^*\) we write \(x R y\) which reads “\(x\) is related to \(y\)”. If \(A = B\) then we say that \(R\) is a relation in \(A\).

A function \(f : A \to B\) is a subset of \(A \times B\) in which each \(a \in A\) appears in one and only one ordered pair belonging to \(f\). Since every subset of \(A \times B\) is a relation, a function is a special type of a relation. A function \(f : A \to B\) is said to be injective if \(f(a_1) = f(a_2)\) implies \(a_1 = a_2\), surjective if \(f(A) = B\), and bijective if it is both injective and surjective.

Let \(R\) be a relation in \(A\) and \(x, y \in A\).

a) \(R\) is called a reflexive relation if \(x R x\) for \(\forall x \in A\);

b) \(R\) is called a nonreflexive relation if \(-\exists x \in A : x R x\);

c) \(R\) is called a symmetric relation if \(x R y \Rightarrow y R x\) for \(\forall x, y \in A\);

d) \(R\) is called an anti-symmetric relation if \(x R y \text{ and } x R y \Rightarrow x = y\);

e) \(R\) is called a transitive relation if \(x R y \text{ and } y R z \Rightarrow x R z\);

f) \(R\) is called an equivalence relation if \(R\) is reflexive, symmetric, and transitive.

Let \(\{C_i\}_{i \in I}\) be a family of non-empty subsets of \(A\). Then \(\{C_i\}_{i \in I}\) is called a partition of \(A\) if \(\bigcup_{i \in I} C_i = A\) and \(C_i \cap C_j = \emptyset\) for every \(i \neq j\). Each \(C_i\) is called an equivalence class of \(A\).

Proposition 1: Let \(R\) be an equivalence relation in a set \(A\) and, for every \(\alpha \in A\), let \(C_\alpha = \{x | (x, \alpha) \in R\}\). Then the family of sets \(\{C_\alpha\}_{\alpha \in A}\) is a partition of \(A\).

The set \(C_\alpha\) is called the equivalence class determined by \(\alpha\), and the set of equivalence classes \(\{C_\alpha\}_{\alpha \in A}\) is denoted by \(A / R\) and called the quotient set.

Proposition 2: Let \(\{C_i\}_{i \in I}\) be a partition of \(A\) and let \(R\) be the relation in \(A\) defined in the following way: \(x R y \iff x, y \in C_i\) for some \(i \in I\). Then \(R\) is an equivalence relation in \(A\).

3. ORDERINGS

Let \(A\) be a set, \(B \subseteq A\), and \(x, y, z, a, b\) be elements of \(A\) (or \(B\)).

A partial order in \(A\) is a relation \(R\) in \(A\) which is transitive: \(x R y \text{ and } y R z \Rightarrow x R z\). We denote \(x R y\) by \(x < y\) if \(R\) is also nonreflexive (\(-\exists x : x R x\)) or by \(x \leq y\) if \(R\) is also reflexive (\(x R x\) for \(\forall x\)) and anti-symmetric (\(x R y \text{ and } x R y \Rightarrow x = y\)).

A set \(A\) together with a specific partial order relation \(R\) in \(A\) is called a partially ordered set and is denoted by \((A, R)\).
(A, <) is linearly (totally) ordered if \(x < y, x = y, y < x \) for \(\forall x, y \in A \). (A, \(\leq \)) is linearly (totally) ordered if \(x \leq y \text{ or } y \leq x \) for \(\forall x, y \in A \).

\(a \) is a first element in \((A, <)\) if \(a < x \) for \(\forall x \neq a \). \(a \) is a first element in \((A, \leq)\) if \(a \leq x \) for \(\forall x \).

\(b \) is a last element in \((A, <)\) if \(x < b \) for \(\forall x \neq b \). \(b \) is a last element in \((A, \leq)\) if \(x \leq b \) for \(\forall x \).

Remark: A linearly ordered set can have at most one first and one last element.

\(a \) is a maximal element in \((A, <)\) if \(\neg \exists x : a < x \). \(a \) is a maximal element in \((A, \leq)\) if from \(a \leq x \) follows \(a = x \).

\(b \) is a minimal element in \((A, <)\) if \(\neg \exists x : x < b \). \(b \) is a minimal element in \((A, \leq)\) if from \(x \leq b \) follows \(b = x \).

\(a \in (A, <) \) is a lower bound of \(B \) if \(\neg \exists x \in B : x < a \). \(a \in (A, \leq) \) is a lower bound of \(B \) if \(a \leq x \) for \(\forall x \in B \).

\(b \in (A, <) \) is an upper bound of \(B \) if \(\neg \exists x \in B : b < x \). \(b \in (A, \leq) \) is an upper bound of \(B \) if \(x \leq b \) for \(\forall x \in B \).

If \(a \in (A, R) \) is a lower bound of \(B \) and \(yRa \) for every other lower bound \(y \) of \(B \), then \(a \) is called the greatest lower bound (g.l.b.) or infimum of \(B \) and is denoted by \(\inf(B) \).

If \(a \in (A, <) \) is an upper bound of \(B \) and \(aRy \) for every other upper bound \(y \) of \(B \), then \(a \) is called the least upper bound (l.u.b.) or supremum of \(B \) and is denoted by \(\sup(B) \).

\((A, <, A)\) and \((B, <, B)\) have the same order type (or are similar) if there exists a bijective function \(f : A \to B \) such that if \(a_1 < A a_2 \) then \(f(a_1) < B f(a_2) \).

Let \(A \) be a linearly ordered set with the property that every nonempty subset of \(A \) contains a first element. Then \(A \) is called a well-ordered set.

Let \(A \) be a well-ordered set and \(\alpha \in A \). The set \(S_\alpha = \{ \beta \mid \beta \in A, \beta < \alpha \} \) is called the initial segment of \(\alpha \).

4. AXIOMS

Principle of Mathematical Induction.

Let \(P \) be a subset of the set \(N \) of the natural numbers with the following properties:

a) \(1 \in P \);

b) \(n \in P \) implies \(n + 1 \in P \).

Then \(P = N \).

Principle of Transfinite Induction.

Let \(P \) be a subset of a well-ordered set \(A \), \(\alpha_0 \) be the first element of \(A \), and \(A \) has the following properties:

a) \(\alpha_0 \in P \);

b) \(S_\alpha \subseteq P \) implies \(\alpha \in P \).

Then \(P = A \).

The Hausdorff Maximal Principle.

Every partially ordered set has a maximal linearly ordered subset.
Zorn’s Lemma.
If X is a partially ordered set and every linearly ordered subset of X has an upper bound, then X has a maximal element.

The Well Ordering Principle.
Every nonempty set X can be well ordered.

The Axiom of Choice.
If $\{X_a\}_{a \in A}$ is a nonempty collection of nonempty sets, then $\prod_{a \in A} X_a$ is nonempty.

5. CARDINAL NUMBERS

Set A is equivalent (equipollent) to set B, denoted by $A \sim B$ if there exists a bijective function $f : A \to B$. (Cantor)

Theorem 1: The relation in sets defined by $A \sim B$ is an equivalence relation.

Let A be any set and let \mathbb{N} denote the family of sets, which are equivalent to A. Then \mathbb{N} is called a cardinal number and is denoted by $\mathbb{N} = \#(A)$, $\mathbb{N} = \text{card}(A)$, or $\mathbb{N} = |A|$.

A set is infinite if it is equivalent to a proper subset of itself. Otherwise, a set is finite. The cardinal number of each of the sets \emptyset, $\{1\}$, $\{1,2\}$, ... is denoted by 0, 1, 2, 3, ... respectively, and is called a finite cardinal.

A set is called countable if it is finite or equivalent to the set \mathbb{N} of the natural numbers.

Let a set A be equivalent to the \mathbb{N} of the natural numbers. Then A is said to have cardinality \mathbb{N}_0.

Theorem 2: Every infinite set contains a subset, which is countable.

Theorem 3: A subset of a countable set is countable.

Theorem 4: Let $\{A_i\}_{i \in I}$ be a countable family of countable sets. Then $\bigcup_{i \in I} A_i$ is countable.

Examples: \mathbb{Z}, \mathbb{N}^2, \mathbb{N}^n, \mathbb{Q}, and the set of points in the plane with rational coordinates are countable sets.

Theorem 5: The unit interval $[0,1]$ is not a countable set.

Let a set A be equivalent to the unit interval $[0,1]$. Then A is said to have cardinality c and to have the power of the continuum.

Examples: $[a,b]$, (a,b), $[a,b]$, $[a,b)$, and \mathbb{R} have cardinality c.

Let $\kappa = \#(A)$, $\tau = \#(B)$, and A be equivalent to a subset of B. Then we write $\kappa \leq \tau$.

Theorem 6: The relation in the cardinal numbers defined by $\kappa \leq \tau$ is reflexive and transitive.

Theorem 7: (Cantor) For any set A, $\#(A) < \#(P(A))$ and, therefore, for any cardinal τ, $\tau < 2^\tau$.

Theorem 8: (Schröder-Bernstein) For any cardinal numbers κ, τ, $\kappa \leq \tau$ and $\tau \leq \kappa$ implies $\kappa = \tau$.

Theorem 9: (Law of Trichotomy) For any pair of cardinal numbers κ and τ, either $\kappa < \tau$, $\kappa = \tau$, or $\kappa > \tau$.

Theorem 10: $2^{\mathbb{N}_0} = c$.

Continuum Hypothesis: There does not exist cardinal number τ such that $\mathbb{N}_0 < \tau < c$.

\[c = \mathbb{N}_0^2\]
Generalized Continuum Hypothesis: Let κ be an infinite cardinal number. There does not exist cardinal number τ such that $\kappa < \tau < 2^\kappa$.

Let κ and τ be cardinal numbers and let A and B be disjoint sets such that $\kappa = \#(A)$ and $\tau = \#(B)$. Then $\kappa + \tau = \#(A \cup B)$, $\kappa \tau = \#(A \times B)$, $\tau^\kappa = \#(B^A)$, where B^A denotes the family of all functions from A into B.

Theorem 11: $\#(2^\kappa) = \#(P(A))$.

Theorem 12: $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$; $(\alpha \beta) \gamma = \alpha (\beta \gamma)$; $\alpha + \beta = \beta + \alpha$; $\alpha \beta = \beta \alpha$; $\alpha(\beta + \gamma) = \alpha \beta + \alpha \gamma$; $(\alpha \beta)^\gamma = \alpha^{\beta \gamma}$; $\alpha^\beta\alpha^\gamma = \alpha^{\beta + \gamma}$; $(\alpha \beta)^\gamma = \alpha^\gamma \beta^\gamma$.

Examples: For natural numbers $a + b = a + c$ implies $b = c$ and $ab = ac$ implies $b = c$. But $\mathbb{N}_0 + \mathbb{N}_0 = \mathbb{N}_0 + 1$ and $\mathbb{N}_0 \neq 1$. Also $\mathbb{N}_0 \cdot \mathbb{N}_0 = \mathbb{N}_0 = \mathbb{N}_0 \cdot 1$ and $\mathbb{N}_0 \neq 1$.

Theorem 13: $c = \mathbb{N}^{\mathbb{N}_0}_0 = c^{\mathbb{N}_0}$; $c = c \cdot \mathbb{N}_0 = c^2 = c^{\mathbb{N}_0}$; $2^c = c^c$.

6. ORDINAL NUMBERS

Theorem 14: Every subset of a well-ordered set is well-ordered.

Theorem 15: If A is well-ordered and B is similar to A, then B is well-ordered.

Theorem 16: Let $\{A_i\}_{i \in I}$ be a well-ordered family of pairwise disjoint well-ordered sets. Then the union of the sets $\bigcup_{i \in I} A_i$ is well-ordered with the following order: Let $a, b \in \bigcup_{i \in I} A_i$; hence there exist $j, k \in I$ such that $a \in A_j$, $b \in A_k$. Now if $j < k$, $a \leq b$ and if $j = k$, then a and b are ordered by the ordering of A_j.

Theorem 17: All finite linearly ordered sets with the same number of elements are well-ordered and are similar to each other.

Examples: All permutations of a given finite set with the natural order are well-ordered and similar. The set N of the natural numbers and the set $N_1 \cup N_2$ are not similar, where $N_1 = \{1, 3, 5, \ldots\}$ and $N_2 = \{2, 4, 6, \ldots\}$.

An element b in a set A is called an **immediate successor** of an element $a \in A$, and a is called the **immediate predecessor** of b if $a < b$ and there does not exist an element $c \in A$ such that $a < c < b$.

Example: No element in Q has an immediate successor or an immediate predecessor.

Theorem 18: Every element in a well-ordered set (except the maximal element) has an immediate successor.

Example: In $N_1 \cup N_2$ 2 does not have an immediate predecessor.

An element in a well-ordered set is called a **limit element** if it does not have an immediate predecessor and if it is not the first element.

Theorem 19: Let $S(A) = \{S_\alpha \mid \alpha \in A\}$ ordered by $S_\alpha < S_\beta$ iff $\alpha < \beta$. Then $S(A)$ is similar to A and, in particular, the function $f : A \rightarrow S(A)$ defined by $f : \alpha \rightarrow S_\alpha$ is a similarity mapping of A into $S(A)$.

Example: $f : N \rightarrow N_2$ where $n \rightarrow 2n$ is a similarity mapping of N into its subset N_2. Notice that for every $n \in N$, $n \leq f(n)$.

Theorem 20: Let A be a well-ordered set, B be a subset of A, and $f : A \rightarrow B$ be a similarity mapping of A into B. Then for every $a \in A$, $a \leq f(a)$.

5
Corollary: Let A and B be similar well-ordered sets. Then there exists only one similarity mapping of A into B.

Corollary: A well-ordered set cannot be similar to one of its initial segments.

Theorem 21: Given any two well-ordered sets, either they are similar to each other or one of them is similar to an initial segment of the other.

If a well-ordered set A is equivalent to an initial segment of a well-ordered set B, then A is said to be shorter than B or B is said to be larger than A.

Example: N is shorter than $N_1 \cup N_2$.

Let A be any well-ordered set and let λ denote the family of well-ordered sets, which are similar to A. Then λ is called an ordinal number and it is denoted by $\lambda = \text{ord}(A)$.

The ordinal number of each of the well-ordered sets \emptyset, $\{1\}$, $\{1,2\}$, $\{1,2,3\}$,... is denoted by 0, 1, 2, 3,... and is called a finite ordinal number. All other ordinals are called transfinite numbers. By definition $\omega = \text{ord}(N)$.

Let $\lambda = \text{ord}(A)$ and $\mu = \text{ord}(B)$. Then $\lambda < \mu$ if A is equivalent to an initial segment of B, $\lambda = \mu$ if A is similar to B, $\lambda + \mu = \text{ord}(\{A \cup B\})$, and $\lambda \cdot \mu = \text{ord}(\{A \times B\})$ where $\{A \times B\}$ is ordered reverse lexicographically i.e. $(a_1,a_2) < (a_3,b_2)$ if $b_1 < b_2$ or $b_1 = b_2$ but $a_1 < a_2$. Let $\{\lambda_i\}_{i \in I}$ be a well-ordered set of ordinal numbers such that $\lambda_i = \text{ord}(A_i)$ for some set A_i. Then

$$\sum_{i \in I} \lambda_i = \text{ord}\left(\bigcup_{i \in I} \{A_i \times \{i\}\}\right).$$

Theorem 22: Any set of ordinal numbers is well-ordered by $\lambda \leq \mu$.

Theorem 23: Let S_α be the set of ordinal numbers less than α. Then $\alpha = \text{ord}(S_\alpha)$.

Every ordinal has an immediate successor. ω does not have immediate predecessor. Such ordinals are called limit numbers.

Theorem 24: For any ordinal λ, $\lambda + 1$ is the immediate successor of λ.

Theorem 25: $(\lambda + \mu) + \nu = \lambda + (\mu + \nu)$; $0 + \lambda = \lambda + 0$; $\lambda \cdot (\mu + \nu) = (\lambda \cdot \mu) + (\lambda \cdot \nu)$; $1 \cdot \lambda = \lambda 1 = \lambda$.

Theorem 26: $n + \omega = \omega$ but $\omega + n > \omega$, therefore the addition operation for ordinals is not commutative. $2\omega = \omega$ but $\omega 2 > \omega$, therefore the multiplication operation for ordinals is not commutative.

Theorem 27: Let λ_i, $i = 1,2,...$ is a finite ordinal greater than 0. Then $\sum_{i=1}^{\infty} \lambda_i = \omega$.

Theorem 28: (Equivalent definition of ordinal numbers) $0 = \emptyset$, $1 = \{0\}$, $2 = \{0,1\}$, $3 = \{0,1,2\}$,..., $\omega = \{0,1,2,\ldots\}$, $\omega + 1 = \{0,1,2,\ldots,\omega\}$, $\omega + 2 = \{0,1,2,...,\omega,\omega + 1\}$,..., $\omega 2 = \{0,1,2,...,\omega,\omega + 1,...\}$, $\omega 2 + 1 = \{0,1,2,...,\omega,\omega + 1,\omega 2\}$,...

Theorem 29: (Structure of ordinal numbers)

$0,1,\omega,\omega + 1,\omega + 2,...,\omega 2,\omega 2 + 1,...,\omega 3,\omega 3 + 1,...,\omega^2,\omega^2 + 1,...,\omega^2 2,...,\omega^3,...,\omega^a,...,\omega^a,...,\omega^a,...,\omega^a,...$